期刊文献+

基于EMD的奇异值分解技术在滚动轴承故障诊断中的应用 被引量:47

APPLICATION OF EMD BASED SINGULAR VALUE DECOMPOSITION TECHNIQUE TO FAULT DIAGNOSIS FOR ROLLER BEARING
在线阅读 下载PDF
导出
摘要 针对滚动轴承故障振动信号的非平稳特征,提出了一种基于经验模态分解(EmpiricalModeDecomposition,简称EMD)和奇异值分解技术的滚动轴承故障诊断方法。该方法首先采用EMD方法将滚动轴承振动信号分解为多个平稳的内禀分量(IntrinsicModefunction,简称IMF)之和,并形成初始特征向量矩阵。然后对初始特征向量矩阵进行奇异值分解得到矩阵的奇异值,将其作为滚动轴承振动信号的故障特征向量,并输入神经网络来识别滚动轴承的工作状态和故障类型。实验分析结果表明,本文方法能有效地应用于滚动轴承故障诊断。 According to the non-stationary characteristics of vibration signals from fault roller bearing a fault diagnosis approach for roller bearings based on EMD (empirical mode decomposition)method and singular value decomposition technique is proposed. The EMD method is used to decompose the vibration signal of a roller bearing into a number of IMF (intrinsic mode function) components from which the initial feature vector matrix is formed. By applying the singular value decomposition technique to the initial feature vector matrix, the decomposed singular values serve as the fault characteristic vector and are input into the neural network, and then the work condition and fault patterns are identified by the output of the neural network. The experimental results show that the proposed approach can be applied to the roller bearing fault diagnosis effectively.
出处 《振动与冲击》 EI CSCD 北大核心 2005年第2期12-15,共4页 Journal of Vibration and Shock
基金 国家自然科学基金(编号: 50275050) 高等学科博士点专项科研基金(编号: 20020532024)资助项目
关键词 EMD 滚动轴承 奇异值分解 神经网络 Applications Decomposition Failure analysis Neural networks Vectors Vibrations (mechanical)
  • 相关文献

参考文献3

  • 1Paya B A,Esat I I. Artificial Neural Network Based Fault Diagnostics of Rotating Machinery Using Wavelet Transforms as a Preprocessor. Mechanical Systems and Signal Processing. 1997,11(5):751-765
  • 2Jack L B,Nandi A K,Mccormick A C. Diagnosis of Rolling Element Bearing Faults Using Radial Basis Function Networks. Applied signal processing .1999,6:25-32
  • 3Huang N E ,et al. The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis.Proc. R. Soc.Lond .A,1998,454:93-99

同被引文献402

引证文献47

二级引证文献421

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部