期刊文献+

一种面向全景视频的交通状态检测方法 被引量:6

Traffic state detection method for full scene video
原文传递
导出
摘要 传统的交通状态检测方法对全景视频中的车辆检测时存在检测精度低、鲁棒性差等缺点。为了解决这些问题,该文提出了一种新的基于虚拟检测线的车辆检测方法。首先,利用提出的基于动态学习率的改进混合Gauss模型构建背景,背景模型的学习率由检测到的车速决定;其次,通过引入Mahalanobis距离来判断虚拟线上的像素是否属于背景;最后,通过设置检测跟踪区域检测车速并跟踪车辆行驶轨迹,避免重复计算车辆数。实验结果验证了所提方法的有效性及在各种场景下较强的鲁棒性。 Traditional traffic state detection approaches for detecting vehicles in full video scenes have drawbacks,such as low detection accuracy and lack of robustness.This paper presents a more effective traffic state detection method based on virtual detection lines using an improved Gaussian mixture model with a dynamic learning rate based on the detected vehicle speed to construct the background scene.The Mahalanobis distance is then used to judge whether the pixels in the virtual detection line belong to the background.Finally,a trajectory zone is selected to obtain the vehicle speed and track its trajectory,while avoiding repeated counting of vehicles.Tests show the method is effective robustness in various situations.
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第1期30-35,共6页 Journal of Tsinghua University(Science and Technology)
基金 国家"十一五"科技支撑计划项目(2007BAK12B15)
关键词 自动化技术 虚拟检测线 MAHALANOBIS距离 交通状态 automation technology virtual detective line Mahalanobis distance traffic state
  • 相关文献

参考文献12

  • 1王春波,张卫东,许晓鸣.智能交通系统运动车辆的视觉检测(英文)[J].红外与毫米波学报,2001,20(2):81-86. 被引量:11
  • 2Nikos P, Rachid D. Active contours and level sets for the detection and tracking of moving objects [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(3): 266-280.
  • 3LEI Xie, ZHU Guangxi, Wang Yuqi, et al. Robust vehicles extraction in a video-based intelligent transportation systems [C]// IEEE 2005 International Conference on Communications, Circuits and Systems. Hong Kong: Institute of Electrical and Electronics Engineers Computer Society, 2005 : 887 - 890.
  • 4Odobez J M, Bouthemy P. Robust multiresolution estimation of parametric motion models [J]. Visual Comm and Image Representation, 1995, 12(6): 348-365.
  • 5Paragios N, Tziritas G. Adaptive detection and localization of moving objects in image sequences [J]. Signal Processing: bnageComm, 1999, (14): 277-296.
  • 6Michalopoulos P G. Vehicle detection video through image processing: The autoscope system [J]. IEEE Trans on Vehicular Technology, 1991, 40(1) : 21 - 29.
  • 7Stauffer C, Grimson W E L. Adaptive background mixture models for real time tracking [C]// Proc IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Fort Collins, CO, USA: IEEE Computer Society, 1999: 246-252.
  • 8Karsten M. 3-D reconstruction of a dynamic environment with a fully calibrated background for traffic scenes [J]. IEEE Trans On Circuits and System for Video Technology. 2005, 15(4):538-549.
  • 9LOU Jianguang, TAN Tieniu, HU Weiming, et al. 3-D model-based vehicle tracking [J]. IEEE Transactions on Image Processing, 2005, 14(10): 1561- 1569.
  • 10Abramczuk T. A microcomputer based TV detector for road traffic [J]. In Symposium on Road Research Program. 1984, 3(2): 145-147.

二级参考文献20

  • 1李璎.智能交通管理系统中的视频采集技术[J].中国人民公安大学学报(自然科学版),2004,10(3):95-98. 被引量:2
  • 2乔光军,杨兆选.基于虚拟线的交通信息视频检测技术及应用[J].电子技术应用,2005,31(9):23-25. 被引量:5
  • 3Papageorgiou C,Poggio T.A trainable system for object detection[J]. International Journal of Computer Vision, 38( 1 ) : 15-33.
  • 4Moon H,Chellappa R,Rosenfeld A.Performance analysis of a simple vehicle detection algorithm[J].Image and Vision Computing,2002, 20(1):1-13.
  • 5Inigo R M.Application of machine vision to traffic monitoring and control[J].IEEE Transactions on Vehicle Technology, 1989,38 (3) : 112-122.
  • 6Michalopoulos P G.Vehicle detection video through image processing:the autoscope system[J].IEEE Trans Vehicular Technology, 1991,40( 1 ) : 21-29.
  • 7李香平.基于复合色彩空间与时空域的视频车辆检测系统的研究[D].天津:天津大学,2005.
  • 8Hoose N.IMPACT:an image analysis tool for motorway analysis and surveillance[J].Traffic Engineering Control Journal, 1992,23 (4) : 140-147.
  • 9KIM Y H.A study on the implementation of moving object tracking system[J].SPIE, 2501 : 1183-1193.
  • 10[1]Lipton A, Fujiyoshi H. Moving target classification and tracking from real-time video,IEEE Workshop on Applications of Computer Vision,Princeton NJ, Oct.1998,8—14

共引文献15

同被引文献64

引证文献6

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部