摘要
随着半导体制造工艺水平和电路集成度的不断提高,加之电磁环境日趋复杂、多变,使得应用于电子系统的传统电磁防护和抗扰方式的不足正日渐突出,导致典型现场可编程逻辑门阵列(FPGA)芯片的电磁抗扰度逐渐下降。以广泛应用的FPGA为研究对象,针对典型近场危害源静电放电(ESD)的防护问题,利用试验方法模拟人ESD注入FPGA芯片对其内部电路造成损伤的过程,建立FPGA受ESD损伤的行为级故障模型,结果表明,电子系统与生物系统受损过程具有某些相似的规律。进而基于电磁仿生学的思想,设计了具有冗余机制和结构自组织功能的虚拟细胞模型,利用遗传算法实现故障自修复的功能。最后利用马尔可夫模型分析其稳态可用度,证明在随机ESD事件频繁发生并导致电路损伤时,此模型仍能保持较高的可用度和安全性。
The ESD protection method for typical FPGA was selected as the experimental object.By using an injection method and human body ESD,the damaging process of FPGA internal circuit was simulated to establish a behavioral fault model of FPGA injured by ESD.Moreover,some similarities of the degraded process between electronic system and biological system were verified.Then,based on the thought of electromagnetic bionics,the virtual cell model with redundancy structure and self-organizing function was designed in order to achieve the function of fault-self-repairing by adopting the genetic algorithm.Finally,the Markov model was used to analyze the steady-state availability of the cell model.It is proved that the model can still keep a higher available degree and security when random ESD event happens frequently and even causes some kind of circuit damage.
出处
《高电压技术》
EI
CAS
CSCD
北大核心
2011年第2期375-381,共7页
High Voltage Engineering
基金
国家自然科学基金专项基金(10927506)~~