期刊文献+

基于支持向量机的中文娱乐新闻词语的识别 被引量:2

RECOGNIZING WORDS AND EXPRESSIONS OF CHINESE ENTERTAINMENT NEWS BASED ON SVM
在线阅读 下载PDF
导出
摘要 在应用基本的支持向量机算法的基础上,提出了一种新的分布增量学习方法,利用主动学习策略对训练样本进行选择,逐步增大提交给学习器训练样本的规模,以提高学习器的识别精确率。实验表明,采用主动学习策略的支持向量机算法是有效的,中文娱乐新闻词语识别的正确率和召回率分别达到了78.92%和86.42%,收到了良好的效果。 Based on applying the fundamental SVM algorithm,a new approach for distributed incremental learning is introduced in this paper,which adopts active learning strategy to select training sample and gradually increase the scale of training sample submitted to the learner,so that the recognition accuracy of the learner is improved.Experiment shows that the SVM algorithm using active learning strategy is effective,and the precision and recall rate of recognizing the words and expressions of Chinese entertainment news achieve up to 78.92% and 86.42% respectively.It has gained good effect.
出处 《计算机应用与软件》 CSCD 2011年第2期249-252,共4页 Computer Applications and Software
基金 忻州师范学院科研基金项目(200904)
关键词 机器学习 娱乐新闻词语 支持向量机 文本分类 主动学习 Machine learning Words and expressions of entertainment news Support vector machine(SVM) Text classification Active learning
  • 相关文献

参考文献13

  • 1Vlachos A.Active learning with support vector machines[D].MS:University ofEdinburgh,2004:12-14.
  • 2Hsu C W,Lin C J.A comparison of methods for multi-class support vector machines[J].IEEE Transactions on Neural Networks,2002,13(2):415-425.
  • 3Chapelle O,Vapnik V N,Bousquet O,et al.Choosing multiple parameters for support vector machines[J].Machine Learning,2002,46(1):131-159.
  • 4Lewis D D,Gale W A.A sequential algorithm for training text classifiers[C]//Prec of the 17th ACM International Conference on Research and Development in Information Retrieval,1994:3-12.
  • 5鲁明羽.Bayes文本分类器的改进方法研究[J].计算机工程,2006,32(17):63-65. 被引量:11
  • 6肖云,韩崇昭.基于支持向量机的降低入侵检测误报警方法[J].计算机工程,2006,32(17):25-27. 被引量:7
  • 7Platt J.Probabilistic outputs for support vector machines and comparison to regularized likelihood methods[C]//Advances in Large Margin Classifiers,2000:61-74.
  • 8Nell Cristianini,John Shawe-Taylor.支持向量机导论[M].北京:电子工业出版社,2004.82-98.
  • 9刘良斌,王小平.基于支持向量机和输出编码的文本分类器研究[J].计算机应用,2004,24(8):32-34. 被引量:8
  • 10李凡,鲁明羽,陆玉昌.关于文本特征抽取新方法的研究[J].清华大学学报(自然科学版),2001,41(7):98-101. 被引量:79

二级参考文献67

  • 1肖云,韩崇昭,郑庆华,王清.一种基于多分类支持向量机的网络入侵检测方法[J].西安交通大学学报,2005,39(6):562-565. 被引量:13
  • 2WienerN.控制论(中译本)[M].北京:科学出版社,1962..
  • 3[1]Cortes C, Vapnik V. Support Vector Networks[J]. Machine Learning, 1995, 20(3):273-297.
  • 4[2]Joachims T. Text Categorization With Support Vector Machines: Learning With Many Relevant Features[A]. Machine Learning: ECML-98, 10th European Conference on Machine Learning[C], 1998. 137-142.
  • 5[3]Allwein E, Schapire R, Singer Y. Reducing multiclass to binary: A Unifying Approach for Margin Classifiers[J]. Journal of Machine Learning Research, 2000,2(1):113-141.
  • 6[4]Dietterich GT, Bakiri G. Solving multiclass learning problems via error-correcting output codes[J]. Journal of Artificial Intelligence Research, 1995,2(1):263-286.
  • 7[5]Yang Y, Pederson J. Feature selection in statistical learning of text categorization[A]. ICML-97[C], 1997. 412-420.
  • 8[6]Yang Y. An Evaluation of Statistical Approaches to Text Categorization[J]. Journal of Information Retrieval, 1999,1(1):67-88.
  • 9Yao Y,Lin T. Generalization of rough sets using model logics[J]. Intelligent Automation and Soft Computing, 1996,2(2):103-120.
  • 10Skowron A,Rauszer C. The discernibility matrices and functions in information systems [A]. Slowinski R. Ifitelligent decision support-handbook of applications and advances of the rough sets theory[C]. Dordrecht :Kluwer Academic Publishers, 1992. 331-362.

共引文献171

同被引文献23

  • 1王锐,马德涛,陈晨.数据挖掘技术及其应用现状探析[J].电脑应用技术,2007(2):20-23. 被引量:23
  • 2谢邦昌.数据挖掘Clementine应用实务[M]北京:机械工业出版社,2008.
  • 3SHEN BIN,LIU YUAN,WANG XIAOYI. Research on Data Mining Models for the Internet of Things[A].2010.127-132.
  • 4HONGWEI CHEN;XIN ZHOU;FANGPING YOU.Study of Double-Characterististics SVM Method for P2P Traffic Identification[A]湖北武汉,2010202-205.
  • 5HE DAKUO,FENG JIE,CHANG HONGRUI. SVM Modeling on Slow Time Varying System and Online Correction Studying[A].2011.4210-4215.
  • 6LIN C J. Formulations of Support Vector Machine:a Note From an Optimization Point of View[J].Neural Computation,2001,(02):307-317.doi:10.1162/089976601300014547.
  • 7Berdahl A, Toruey C J, Loannou C C, et al. Emergent Sensing of Complex Environments by Mobile Animal Groups[ J]. Science,2013, 339(6119) :574-576.
  • 8Arganda S, Perez E A, Polavieja G G. A common rule for decision making in animal collectives across species [ J ]. PNAS, 2012, 109 (50) :20508-20513.
  • 9Budick S A, O 'Malley D M. Locomotor repertoire of the larval ze- brafish: swimming turning and prey capture [ J ]. J Exp Biol, 2000, 203:2565 - 2579.
  • 10Miller N Y, Gerlai R. Quantification of shoaling behavior in zebrafish (Danio rerio)[J]. Behav. Brain Res. 2007,184(2) :157 -166.

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部