期刊文献+

采用主动学习策略的组织机构名识别 被引量:12

Organization Names Recognition with Active Learning
在线阅读 下载PDF
导出
摘要 组织机构名等命名实体的识别是信息抽取、机器翻译等任务的重要基础.为了克服识别器训练过程中对标注数据的依赖,本文提出了一种基于主动学习的训练策略,改进了基本的最大熵模型的解码算法和训练过程.实验表明采用主动学习策略的最大熵模型训练算法能够有效减少标注数据的使用. The recognition of organization names is one of the fundamental tasks in Information Extraction and Machine Translation. To minimize the dependency on the labeled data used to training the model, an improved training strategy based on actire learning is proposed, and the classical recognition system can be elevated rapidly maximum entropy model is extended. The even with small account of selected labeled experiments show that performance of the samples, which prove the efficiency of the active learning training strategies.
出处 《小型微型计算机系统》 CSCD 北大核心 2006年第4期710-714,共5页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(60272088)资助 国家"八六三"基金项目(2002AA11401)资助
关键词 主动学习 命名实体识别 最大熵模型 组织机构名 active learning named entity recognition maximum entropy model organization names
  • 相关文献

参考文献13

  • 1Palmer D,Day D S.A statistical profile of the named entity task[C].Proceedings of the 5th Conference on Applied Natural Language Processing,Washington D.C.,March 1997.
  • 2Adam L,Berger B,Pietra V.Pietra.A maximum entropy approach to natrual language processing[J].Computational Linguistics,1996,22 (1):39-71.
  • 3Adwait Ratnaparkhi.Maximum entropy models for natural language ambiguity resolution[D].Ph.D Thesis,University of Pennsylvania,1998.
  • 4Cohn D A,Chahramani Z.MI Jordan.Active learning with statistical models[J].Journal of Artificial Intelligence Research,1996,4:129-145.
  • 5Andrew K,McCallum K.Nigam.Employing EM and pool-based active learning for text classification[C].In:Proceedings of the International Conference on Machine Learning,1998.
  • 6Yoram Baram,Ran El-Yaniv,Kobi Luz.Online choice of active learning algotithms[C].Proceedings of the 20th International Conference on Machine Learning (ICML-2003),2003.
  • 7Sassano M.An empirical study of active learning with SVM for japanese word segmentation[C].In:Proceedings of the Association of Computational Linguistics (ACL).2002.
  • 8Tang M,Luo X,Roukos S.Active learning for statistical natural language parsing[C].In:Proceedings of the Association of Computational Linguistics (ACL).2002.
  • 9Brinker K.Incorporating diversity in active learning with support vector machines[C].In:Proceedings of the International Conference on Machine Learning,2003.
  • 10Schohn D,Cohn D.Less is more:active learning with support vector machines[C].In:Proceedings of International Workshop on Adaptive Text Extraction and Mining.2000.

二级参考文献2

共引文献11

同被引文献98

引证文献12

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部