期刊文献+

改进的全局K′-means算法及其在数据分类中的应用 被引量:6

Modified Global K'-means Algorithm and Its Application to Data Clustering
在线阅读 下载PDF
导出
摘要 为了解决初始聚类中心的选择、簇个数的确定以及孤立点的避免等问题,提出了一种改进的全局K′-means算法.改进的算法不仅能够利用辅助聚类函数来计算初始点,而且能够利用目标函数在没有预定义聚类个数的前提下,找到实际的聚类中心个数,同时避免了孤立点问题.将改进的算法应用到实际数据集的分类中,并与改进的全局K-means算法以及K′-means算法进行了比较,实验结果证明所提出的算法能获得更好的聚类结果. In order to solve the problems of the initialization of clustering centers,determination of the number of clustering centers,and avoidance of dead-unit and so on,a modified global E-means algorithm(MGK'M) is proposed.The improved algorithm can be used not only to calculate its starting point by the auxiliary cluster function,but also to find the actual number of clusters by using the cost-function without preset the number of clusters.At the same time,it can avoid the dead-unit problem.The improved algorithm is used for clustering of actual data sets.Experiment results demonstrate that the proposed algorithm can get better clustering results compared with the modified global K-means algorithm and K-means algorithm.
出处 《信息与控制》 CSCD 北大核心 2011年第1期100-104,共5页 Information and Control
基金 国家863计划资助项目(2008AA04Z131) 国家973计划资助项目(2007CB714300) 北京市优秀人才培养资助项目(2009D013000000003)
关键词 全局K′-means算法 聚类算法 竞争惩罚机制 global K'-means algorithm clustering algorithm rival penalized mechanism
  • 相关文献

参考文献14

  • 1Zalik K R. An efficient k-means clustering algorithm[J]. Pattern Recognition Letters, 2008, 29(9): 1385-1391.
  • 2张琪,胡昌华,乔玉坤.基于聚类粒子滤波器的故障预报方法研究[J].信息与控制,2009,38(1):115-120. 被引量:3
  • 3杜红斌,夏克文,刘南平,吴涛.一种改进的基于广义后缀树的文本聚类算法[J].信息与控制,2009,38(3):331-336. 被引量:7
  • 4Aswani K C, Srinivas S. Concept lattice reduction using fuzzy K-means clustering[J]. Expert Systems with Applications, 2010, 37(3): 2696-2704.
  • 5Bagirov A, Mardaneh K. Modified global k-means algorithm for clustering in gene expression data sets[C]//Proceedings of the 2006 Workshop on Intelligent Systems for Bioinformatics. New York, NJ, USA: ACM, 2006: 23-28.
  • 6Likas A, Vlassis N, Jr Verbeek J. The global k-means clustering algorithm[J]. Pattern Recognition, 2003, 36(2): 451-461.
  • 7Wallace C S, Dowe D L. Minimum message length and Kolmogorov complexity[J]. Computer Journal, 1999, 42(4): 270- 283.
  • 8Redmond S, Heneghan C. A method for initialising the k-means clustering algorithm using kd-trees[J]. Pattern Recognition Letters, 2007, 28(8): 965-973.
  • 9王守强,朱大铭,韩爱丽.基于初始点选取的k-means聚类近似常数算法[J].计算机研究与发展,2007,44(z2):69-74. 被引量:3
  • 10Xu L, Krzyzak A, Oja E. Rival penalized competitive learning for clustering analysis, RBF net, and curve detection[J]. 1EEE Transactions on Neural Networks, 1993, 4(4): 636-649.

二级参考文献36

共引文献10

同被引文献51

引证文献6

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部