期刊文献+

一种改进的小波阈值高斯噪声图像降噪方法 被引量:8

An Improved Wavelet Threshold De-noising Method for Gaussian Noise Image
在线阅读 下载PDF
导出
摘要 关于图像传输的优化问题,针对传统小波阈值降噪方法,为了克服硬阈值函数不连续,软阈值函数中估计小波系数与分解小波系数之间存在恒定偏差,构造了一个新的非线性阈值函数,通过调整参数可视化地改变阈值函数的形状,将Dono-ho的硬阈值和软阈值作为两种特殊的情况。算法采用对非重要小波系数的处理,不是均设为0,系数可由多项式调节以接近理想小波系数,并进行仿真。仿真结果表明,算法对图像中的加性噪声能很好地去除,并且较好地克服了传统软、硬阈值存在的振荡和边界模糊偏差缺陷,改善了图像质量。 In order to overcome the discontinuity of the hard thresholding function and the constant deviation between the estimated wavelet coefficients and the decomposition wavelet coefficients in the soft thresholding function of the wavelet threshold de-noising method,this paper presents a new non-linear thresholding function,and the shape of the new thresholding function can be changed visually by adjusting parameters.It takes the Donoho hard-soft threshold as two kinds of special situations.The advantage of the algorithm is non-important wavelet coefficient processing.The coefficients are not supposed to be zero and can be adjusted by polynomial to approach its ideal wavelet coefficients.Simulation experiments confirm that the improved method can remove the noise effectively and overcome the shortcomings of hard and soft threshold with oscillation and borderline blurred.Both the PSNR and the visual effects are superior to the traditional method of the soft and hard threshold.
作者 王军
出处 《计算机仿真》 CSCD 北大核心 2011年第2期295-299,共5页 Computer Simulation
关键词 阈值函数 小波阈值降噪 峰值信噪比 均方误差 Thresholding function Wavelet threshold De-noising Power signal to noise ratio(PSNR) Mean square error(MSE)
  • 相关文献

参考文献9

  • 1D L Donoho. De - noising by soft - threshold[ J]. IEEE Transaction on information Theory, 1995,41:613 -627.
  • 2段青,李凤祥,田兆垒.一种改进的小波阈值信号去噪方法[J].计算机仿真,2009,26(4):348-351. 被引量:32
  • 3J Portilla, V Strela, M Wainwright, E Simoncelli. Image denoising using scale mixture of Gaussians in the wavelet domain[ J]. IEEE Trans. lmage Process, 2003,12 ( 11 ) : 1338 - 1350.
  • 4孙懋珩,苏枫.一种改进的自适应混合噪声滤波算法[J].计算机仿真,2007,24(12):205-207. 被引量:5
  • 5D L Donoho, I M Johnstone. Adapting to unknown smoothness via wavelet shrinkage[ J]. Journal of the American Statistical Assoc, 1995, 90(12) :1200 - 1224.
  • 6H Gao. Wavelet shrinkage denoising using the nonnegative garrote [J]. Comput. Graph. Stat. 7, 1998.469-488.
  • 7X P Zhang, M D Desai. Adaptive denoising based on SURE risk [J]. IEEE Signal Process. Lett. 1998 5 (10) :265 -267.
  • 8X P Zhang. Thresholding neural network for adaptive noise reduction [ J]. IEEE Trans. Neural Networks, 2001, 12 (3) : 567 - 584.
  • 9H Gao, A G Bruce. WaveShrink with @m shrinkage[J]. Stat. Sin. 7, 1997. 855-874.

二级参考文献10

  • 1RAFAEL C GONZALEZ,RICHARD E WOODS.数字图像处理(第二版)[M].阮秋琦,阮宇智译.北京:电子工业出版社,2003:233-240.
  • 2LI RUI,Y J ZHANG.A hybrid filter for the cancellation of mixed gaussian noise and impulse noise[C].ICICS-PCM 2003,Singapore:Springer LNCS2836,2003.508-512.
  • 3Y CHOI,R KRISHNAPURAR.A robust approach to image enhancement based in fuzzy logic[J].IEEE Trans.on Image Processing,1997,6(6):808-825.
  • 4H K KWAN.Fuzzy filters for noisy image filtering[J].IEEE Proc.on Circuits and Systems,2003,(4):161-164.
  • 5KAORU ARAKAWA.Median filter based on fuzzy rules and its application to image restoration[J].Fuzzy Sets and Systems,1996,77(8):3-13.
  • 6Y H LEE,K S A ASSAM.Generalized median filtering and related nonlinear filtering techniques[J].IEEE Transactions on Acoust,Speech,Signal Processing,1985,33(3):669-672.
  • 7YANG RUIKANG.Optimal Weighted Median Filtering Under Structural Constrains[J].IEEE Transactions on Signal Processing,1995,43(3):59l-603.
  • 8张宇,王希勤,彭应宁.自适应中心加权的改进均值滤波算法[J].清华大学学报(自然科学版),1999,39(9):76-78. 被引量:70
  • 9桂延宁,焦李成,张福顺.航空制导炸弹惯性参数遥测中的小波去噪[J].西安电子科技大学学报,2003,30(1):117-119. 被引量:10
  • 10张维强,宋国乡.基于一种新的阈值函数的小波域信号去噪[J].西安电子科技大学学报,2004,31(2):296-299. 被引量:191

共引文献35

同被引文献70

引证文献8

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部