期刊文献+

光诱导和组成型启动子控制柠檬酸合酶基因过量表达对转基因烟草耐铝性影响的比较 被引量:6

Comparison study on effects of overexpressing citrate synthase driven by light-inducible promoter and constitutive promoter on Al tolerance of transgenic tobacco plants
在线阅读 下载PDF
导出
摘要 分别用光诱导型启动子(PrbcS)和组成型启动子(Ca MV35S)驱动柠檬酸合酶基因(cs)在转基因烟草中过量表达,比较转基因烟草中柠檬酸的含量和分泌量及其铝耐受性的变化.结果表明:诱导型转基因株系的CS酶活性是野生型的2.3~2.4倍,组成型转基因株系的酶活性是野生型的1.6~2倍;在30μmol·L-1铝胁迫下,诱导型转基因植株的根相对伸长量是野生型的2.8~2.9倍,组成型的根相对伸长量是野生型的2~2.3倍;在无铝或300μmol·L-1铝胁迫下,转基因烟草叶片和根中柠檬酸含量均高于野生型,其中诱导型转基因植株叶片中柠檬酸含量高于组成型转基因植株,转基因烟草柠檬酸的分泌量分别是野生型的1.8~2.0倍和3.0~3.3倍;在有铝胁迫的珍珠岩基质上培养时,转基因烟草的生长情况好于野生型.这些结果证明,与Ca MV35S相比,采用PrbcS启动子控制cs基因的过量表达可更有效地增加转基因烟草中CS的酶活性及叶片中柠檬酸的合成量,同时也能更有效地提高转基因烟草柠檬酸的分泌量,从而增强其对铝毒害的抵御能力. Overexpression of citrate synthase(cs) cDNA of tobacco was driven by the light-inducible promoter of rubisco small subunit(PrbcS) and the constitutive promoter CaMV 35S(35S) in transgenic tobacco plants,respectively.The changes in citrate contents and exudations as well as Al tolerances in transgenic PrbcS and 35S tobacco plants were compared.The results showed that CS enzyme activities were increased 2.3-2.4 folds and 1.6-2 folds in transgenic PrbcS and 35S tobacco plants as compared with wild tobacco(WT) plants,respectively.When exposed to 30 μmol·L-1 Al,relative root elongation rates of transgenic PrbcS and 35S tobacco plants were also increased 2.8-2.9 folds and 2-2.3 folds as compared with WT,respectively.Citrate contents in the transgenic tobacco leaves were significantly increased compared with the WT plants,which were especially pronounced in transgenic PrbcS tobacco plants.Citrate contents in the transgenic PrbcS tobacco roots and citrate exudation from their roots were elevated more effectively compared with transgenic 35S plants under acidic conditions with 300 μmol·L-1 Al3+ stress.When grown in a perlite medium supplied with 500 μmol·L-1 Al3+ nutritional solution twice a week,all transgenic tobacco lines showed better growth performance than the WT plants.The results above suggest that CS enzyme activity and citrate synthesis are increased more effectively in transgenic tobacco when cs overexpression is driven by PrbcS promoter.Consequently,citrate exudations and Al tolerance in transgenic PrbcS tobacco plants are also enhanced and improved more evidently compared with transgenic 35S ones.
出处 《浙江大学学报(农业与生命科学版)》 CAS CSCD 北大核心 2011年第1期31-39,共9页 Journal of Zhejiang University:Agriculture and Life Sciences
基金 国家重点基础研究发展计划"973"资助项目(2007CB108901)
关键词 柠檬酸合酶 铝耐受性 转基因烟草 光诱导启动子 组成型启动子 citrate synthase Al tolerance transgenic tobacco light-inducible promoter constitutive promoter
  • 相关文献

参考文献17

  • 1Ma J F. Role of organic acid in detoxification of aluminum in higher plants [J]. Plant and Cell Physiology, 2000, 41: 383-390.
  • 2Kochian L V, Hoekenga O A, Pineros M A. How do crop plants tolerate acid soils? Mechanisms of aluminium tolerance and phosphorous efficiency [J]. Annual Review of Plant Biology, 2004, 55 : 459-493.
  • 3De la Fuente J M, Ramirez-Rodriguez V, Cabrera-Pone J L, et al. Aluminium tolerance in transgenic plants by alteration of citrate synthesis [J]. Science, 1997, 276: 1566-1568.
  • 4Koyama H, Kawamura A, Kihara T, et al. Overexpression of mitochondrial citrate synthase in Arabidopsis thaliana improved growth on phosphorus limited soil [J]. Plant and Cell Physiology, 2000, 41: 1030-1037.
  • 5Anoop V M, Basu U, Mccammon M T, et al. Modulation of citrate metabolism alters aluminium tolerance in yeast and transgenic canola overexpressing a mitochondrial citrate synthase [J]. Plant Physiology, 2003. 132: 2205-2217.
  • 6Pierluigi B, Daniele R, Peter L, et al. Bacterial citrate synthase expression and soil aluminium tolerance in transgenic alfalfa [J]. Plant Cell Reports, 2008, 27: 893-901.
  • 7Deng W, Luo K, Li Z, et al. Overexpression of Citrus junos mitochondrial citrate synthase gene in Nicotiana benthamiana confers aluminum tolerance [J]. Planta, 2009, 230(2): 355-365.
  • 8Han Y Y, Zhang W Z, Zhang B L, et al. One novel mitochondrial citrate synthase from Oryza sativa L. can enhance aluminum tolerance in transgenic tobacco [J]. Molecular Biotechnology, 2009, 42: 299-305.
  • 9Jefferson R A, Kavanagh T A, Bevan M W. GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants[J]. European Molecular Biology Organization Journal, 1987, 6 : 3901-3907.
  • 10胡清泉,王奇峰,李昆志,陈丽梅,玉永雄.烟草柠檬酸合成酶基因的克隆及其光诱导型植物表达载体的构建[J].草业学报,2009,18(4):161-167. 被引量:10

二级参考文献17

  • 1刘巧泉,于恒秀,张文娟,王红梅,顾铭洪.水稻rbcS启动子控制的外源基因在转基因水稻中的特异性表达[J].植物生理与分子生物学学报,2005,31(3):247-253. 被引量:23
  • 2吴金霞,陈彦龙,何近刚,路铁刚.生物技术在牧草品质改良中的应用[J].草业学报,2007,16(1):1-9. 被引量:41
  • 3杨敏,黎晓峰,玉永雄,顾明华,凌桂芝,陈佩琼,卿冬进.铝对苜蓿生长、结瘤及根毛变形的影响[J].农业环境科学学报,2007,26(1):202-206. 被引量:8
  • 4Ma J F. Role of organic acid in detoxification of aluminum in higher plants[J]. Plant and Cell Physiology, 2000, 41: 383-390.
  • 5Delhaize E, Ryan P R. Aluminum toxicity and tolerance in plants[J]. Plant Physiology, 1995, 107: 315-332.
  • 6Foy C D. The physiology of plant adaptation to mineal stress[J]. Iowa State Joural of Research, 1983, 57: 355-392.
  • 7Ryan P R, Ditomaso J M, Kochian L V. Aluminum toxicity in roots: An investigation of special sensitivity and to role of the cap[J]. Joural of Experimetal Botany, 1993, 44:437-446.
  • 8Taylor G J. Current views of the aluminum stress response: The physiological basis of toleranceEJ~. Current Topics in Plant Biology and Physiology, 1991, 10: 57-93.
  • 9Hue N V, Craddock G R, Adams F. Effect of organic acids on aluminum toxicty in subsoils[J]. Soil Science Society of America Journal, 1986, 50: 28-34.
  • 10Ma J F, Ryan P R, Delhaize E. Aluminum tolerance in plants and the complexing role of organic acids[J]. Trends in Plants Science, 2001, 6(6):273-278.

共引文献9

同被引文献117

引证文献6

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部