期刊文献+

基于粒子群优化的核模糊属性c-均值聚类算法

Particle Swarm Optimization Based on Kernelized Fuzzy Attribute C-means Clustering Algorithm
在线阅读 下载PDF
导出
摘要 为克服核模糊属性c-均值聚类算法易陷入局部最优解的缺点,提出一种新的基于粒子群优化的核模糊属性c-均值聚类算法.该算法根据核模糊属性c-均值聚类准则设计适应度函数,利用粒子群优化算法对聚类中心进行优化,在粒子迭代进化过程中采用动态调整学习因子,提高算法的优化性能.实验表明,本文算法优于单一使用核模糊属性c-均值聚类算法和基于粒子群优化的核模糊c-均值聚类算法,也优于目前常见的典型聚类算法. To overcome the deficiency of being easily trapped into local minima of kernelized fuzzy attribute C-means clustering algorithm,a novel kernelized fuzzy attribute C-means clustering algorithm based on particle swarm optimization is proposed.A fitness function is designed according to the clustering principle and the method of particle swarm optimization is utilized to optimize the cluster centers.During the procedure of the particle update,the learning factors are adjusted according to its relative position to improve the performance of the proposed algorithm.The experiment results show that the new proposed algorithm is better than kernelized fuzzy attribute C-means clustering algorithm or particle swarm optimization based on kernelized fuzzy C-means clustering algorithm,which is also superior to the typical clustering algorithm in clustering ability and stability.
作者 刘进
机构地区 广西师范学院
出处 《广西师范学院学报(自然科学版)》 2010年第4期86-90,共5页 Journal of Guangxi Teachers Education University(Natural Science Edition)
基金 广西自然科学基金资助项目(桂自1013054)
关键词 粒子群优化 C-均值聚类 稳态函数 核聚类 核模糊属性c-均值聚类 particle swarm optimization C-means clustering stable function kernel clustering kernelized fuzzy attribute C-means clustering
  • 相关文献

参考文献7

  • 1K L Wu,M S YANG.Alternative c-means clustering algorithms[J].Pattern Recognition,35(2002):2267-2278.
  • 2JINGWEI LIU,MEIZHI XU.Kerndized fuzzy attribute C-means clustering algorithm[J].Fuzzy Sets and System,159(2008):2428-2445.
  • 3程乾生.属性均值聚类[J].系统工程理论与实践,1998,18(9):124-126. 被引量:26
  • 4杨广全,朱昌明.基于粒子群优化的模糊核聚类方法[J].上海交通大学学报,2009,43(6):935-939. 被引量:12
  • 5程乾生.属性识别理论模型及其应用[J].北京大学学报(自然科学版),1997,33(1):12-20. 被引量:579
  • 6KENNEDY J,EBERHART R.Particle swarm optimization[C].IEEE International Conference on Neural Networks,Perth,Australia,1995:1942-1948.
  • 7YUHUI SHI,RUSSELL EBERHART.A modified particle swarm optimizer[C].Proceedings of IEEE International Conference on Evolutionary Computation.Piscataway,NJ,1998:69-73.

二级参考文献19

  • 1徐向华,朱杰,郭强.语音识别中基于模糊聚类分析的参数聚类[J].上海交通大学学报,2004,38(12):2086-2088. 被引量:3
  • 2张道强,陈松灿.在核诱导的鲁棒度量下的模糊C-均值与可能性C-均值算法[J].模式识别与人工智能,2004,17(4):390-395. 被引量:3
  • 3Wu K L, Yang M S. Alternative C-means clustering algorithms [J]. Pattern Recognition, 2002, 35 (10) : 2267-2278.
  • 4Lee D, Baek S, Sung K. Modified K-means algorithm for vector quantizer design[J]. IEEE Signal Processing Letters, 1997, 4(1): 2-4.
  • 5Eberhart R C, Shi Y. Tracking and optimizing dynamic systems with particle swarms [C]//Proceedings of the 2001 Congress on Evolutionary Computation. Korea, Seoul: IEEE, 2001: 94-97.
  • 6Ratnaweera A, Halgamuge S K, Watson H C. Selforganizing hierarchical particle swarm optimizer with time-varying acceleration coefficients[J]. IEEE Transactions on Evolutionary Computation, 2004, 8 (3) : 240- 255.
  • 7Higashi N, Iba H. Particle swarm optimization with Gaussian mutation [C]// Proceedings of the IEEE Swarm Intelligence Symposium. Indianapolis, Indiana, USA: IEEE, 2003: 72-79.
  • 8程乾生,中国工业与应用数学学会第三次大会文集,1994年
  • 9叶文虎,环境质量评价学,1994年
  • 10楼世博,模糊数学,1983年

共引文献599

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部