期刊文献+

基于粒子群优化的模糊核聚类方法 被引量:12

Particle Swarm Optimization Algorithm Based Fuzzy Kernel Clustering Method
在线阅读 下载PDF
导出
摘要 针对模糊核聚类对初始值敏感、易陷入局部最优的缺点,提出了基于粒子群优化的模糊核聚类方法.该方法根据聚类准则设计适应度函数,利用粒子群优化算法对聚类中心进行优化,在迭代优化过程中设计了梯度下降法加快算法的收敛速度,并引入变异机制增强粒子群的多样性.仿真实验及在水轮机转轮叶片裂纹源定位中的应用验证了算法的可行性和有效性. To overcome the drawbacks of fuzzy kernel clustering method sensitive to the initial cluster centers and easy to be trapped into local minima, the fuzzy kernel clustering method based on particle swarm optimization was proposed. The proposed method designs the fitness function according to the clustering principle and utilizes the particle swarm optimization to optimize the cluster centers. During the procedure of the iterations, the gradient descent operator is designed to accelerate the convergent speed and the mutation operator to improve the diversity of particle swarm. The simulation experiments and the crack source location in turbine blades verify the feasibility and effectiveness of the proposed method.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2009年第6期935-939,共5页 Journal of Shanghai Jiaotong University
关键词 聚类分析 模糊核聚类 粒子群优化算法 梯度下降法 cluster analysis fuzzy kernel clustering particle swarm optimization gradient descent
  • 相关文献

参考文献8

  • 1徐向华,朱杰,郭强.语音识别中基于模糊聚类分析的参数聚类[J].上海交通大学学报,2004,38(12):2086-2088. 被引量:3
  • 2张道强,陈松灿.在核诱导的鲁棒度量下的模糊C-均值与可能性C-均值算法[J].模式识别与人工智能,2004,17(4):390-395. 被引量:3
  • 3Wu K L, Yang M S. Alternative C-means clustering algorithms [J]. Pattern Recognition, 2002, 35 (10) : 2267-2278.
  • 4杨广全,朱昌明,王向红,涂治国.基于粒子群K均值聚类算法的电梯交通模式识别[J].控制与决策,2007,22(10):1139-1142. 被引量:11
  • 5Lee D, Baek S, Sung K. Modified K-means algorithm for vector quantizer design[J]. IEEE Signal Processing Letters, 1997, 4(1): 2-4.
  • 6Eberhart R C, Shi Y. Tracking and optimizing dynamic systems with particle swarms [C]//Proceedings of the 2001 Congress on Evolutionary Computation. Korea, Seoul: IEEE, 2001: 94-97.
  • 7Ratnaweera A, Halgamuge S K, Watson H C. Selforganizing hierarchical particle swarm optimizer with time-varying acceleration coefficients[J]. IEEE Transactions on Evolutionary Computation, 2004, 8 (3) : 240- 255.
  • 8Higashi N, Iba H. Particle swarm optimization with Gaussian mutation [C]// Proceedings of the IEEE Swarm Intelligence Symposium. Indianapolis, Indiana, USA: IEEE, 2003: 72-79.

二级参考文献36

  • 1李爱国.多粒子群协同优化算法[J].复旦学报(自然科学版),2004,43(5):923-925. 被引量:398
  • 2刘靖明,韩丽川,侯立文.基于粒子群的K均值聚类算法[J].系统工程理论与实践,2005,25(6):54-58. 被引量:122
  • 3许玉格,罗飞.新型电梯群控系统交通模式识别方法[J].控制理论与应用,2005,22(6):900-904. 被引量:12
  • 4Krishnapuram R, Kim J. Clustering Algorithms Based on Volume Criteria. IEEE Trans on Fuzzy Systems, 2000, 8(2): 228 -236
  • 5Wu K L, Yang M S. Alternative C -Means Clustering Algorithms. Pattern Recognition, 2002, 35(12): 2267-2278
  • 6Ohashi Y. Fuzzy Clustering and Robust Estimation. In: Proc of the 9th International Meeting of SAS Users Group. Hollywood Beach, Florida, USA, 1984, 18-21
  • 7Dave R N. Characterization and Detection of Noise in Clustering. Pattern Recognition Letters, 1991, 12 (11) : 657-664
  • 8Dave R N, Krishnapuram R. Robust Clustering Method: A Unified View. IEEE Trans on Fuzzy Systems, 1997, 5(2) : 270 -293
  • 9Krishnapuram R, Keller J M. A Possibilistie Approach to Clustering. IEEE Trans on Fuzzy Systems, 1993, 1:98-110
  • 10Barni M, Cappellini V, Meeoeei A. Comments on "A Possibilistic Approach to Clustering". IEEE Trans on Fuzzy Systems, 1996, 4:393-396

共引文献13

同被引文献154

引证文献12

二级引证文献195

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部