期刊文献+

多目标无功优化的向量评价自适应免疫粒子群算法 被引量:1

Vector Evaluated Adaptive Immune Particle Swarm Optimization Algorithm for Multi-objective Reactive Power Optimization
在线阅读 下载PDF
导出
摘要 为了克服粒子群算法在高维复杂问题寻优时容易陷入局部搜索的现象,提出了一种自适应免疫粒子群算法。该算法利用引入免疫系统的免疫信息处理机制和自动调整动量系数的自适应因子,从整体上达到系统的最佳控制方案。并将基于目标向量的个体评价方法与自适应免疫粒子群算法相结合,提出了基于向量评价的自适应免疫粒子群算法(vector evaluated adaptive immune particle swarm optimization,VEAIPSO)来解决多目标无功优化问题。通过引入静态电压稳定指标,建立了以系统有功损耗最小、节点电压偏移量最小及静态电压稳定裕度最大为目标的多目标无功优化模型。IEEE30和IEEE118节点系统算例仿真结果表明,该算法能有效地解决多目标无功优化问题,并具有良好的收敛稳定性和较高的寻优精度。 An adaptive immune particle swarm optimization(AIPSO) algorithm is presented to solve the problem that the conventional particle swarm optimization(PSO) algorithm is easy to fall into a locally optimized point.In the proposed algorithm,the optimal control mode on the whole is achieved by applying the immune system with immune information transacting mechanism and PSO with adaptive factor for automatic adjustment of momentum coefficient.Object vector individual evaluation methods and adaptive immune particle swarm optimization are combined to produce the vector evaluated adaptive immune particle swarm optimization(VEAIPSO) to solve multi-objective reactive power optimization problem.With the introduction of the static voltage stability index,multi-objective reactive power optimization model is established,which can gain the object including the minimum of system active power loss,the minimum of node voltage offset and the maximum of static voltage stability margin.The simulation results of the standard IEEE-30-bus and IEEE-118-bus power system indicate that the algorithm is efficient in solving multi-objective reactive power optimization problem and has favorable convergence stability and higher optimum searching precision.
出处 《广东电力》 2010年第10期9-13,53,共6页 Guangdong Electric Power
关键词 多目标无功优化 自适应免疫粒子群算法 向量评价 静态电压稳定裕度 multi-objective reactive power optimization adaptive immune particle swarm optimization(AIPSO) algorithm vector evaluated static voltage stability margin
  • 相关文献

参考文献10

  • 1许文超,郭伟.电力系统无功优化的模型及算法综述[J].电力系统及其自动化学报,2003,15(1):100-104. 被引量:127
  • 2张勇军,任震,李邦峰.电力系统无功优化调度研究综述[J].电网技术,2005,29(2):50-56. 被引量:122
  • 3MOMOH J A, EI-HAWARY M E, ADAPA R. A Review of Selected Optimal Power Flow Literature to 1993 Ⅱ Newton, Linear Programming and Interior Point Methods [J]. IEEE Trans. on PowerSystems, 1999, 14(1): 105-111.
  • 4万黎,袁荣湘.最优潮流算法综述[J].继电器,2005,33(11):80-87. 被引量:27
  • 5KENNEY J, EBERHART R. Particle Swarm Optimization[C]//Proceedings of IEEE Conference on Neural Networks, Perth: [s. n. ], 1995.
  • 6袁晓辉,王乘,张勇传,袁艳斌.粒子群优化算法在电力系统中的应用[J].电网技术,2004,28(19):14-19. 被引量:220
  • 7王磊,潘进,焦李成.免疫算法[J].电子学报,2000,28(7):74-78. 被引量:354
  • 8SCHAFFER J D. Multiple Objective Optimization with Vector Evaluated Genetic Algorithms[C]//Proceeding of the 1^st Int. Conf. on Genetic Algorighms, [S. l]: [s. n. ], 1986.
  • 9WU Q H, CAO Y J, WEN J X. Optimal Reactive Power Dispatch Using an Adaptive Genetic Algorithm[J]. Electric Power&Energy System, 1998, 20(8): 563-569.
  • 10吴际舜,侯志俭.电力系统潮流计算及方法[M].上海:上海交通大学出版社,2000.

二级参考文献138

共引文献817

同被引文献13

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部