期刊文献+

自适应免疫粒子群算法在动态无功优化中应用 被引量:26

Application of adaptive immune PSO in dynamic reactive power optimization
在线阅读 下载PDF
导出
摘要 根据电力系统实际运行中负荷不断变化的情况,提出了动态无功优化问题的完整数学描述和计算方法。从负荷曲线的特点出发,结合设备动作次数约束,提出利用遗传算法进行智能化负荷分段的方法。利用引入免疫系统的免疫信息处理机制和自动调整动量系数的自适应因子的粒子群算法,从整体上获得系统的最优控制方式。IEEE 30节点系统算例分析表明,该方法有效减少了补偿设备和变压器分接头的动作次数,其中节点12电容器组的投切次数由6次降为2次,且系统在一天内的有功损耗由1.2413p.u.降为1.1554p.u.。 With the consideration of the varying load of power system,a complete mathematical representation of dynamic reactive power optimization and its calculation method are presented. According to load characteristics and combined with constraints of device action times, an intellectualized load dividing method using genetic algorithm is proposed. The optimal control mode on the whole is achieved by applying the immune system with immune information transacting mechanism and PSO (Particle Swarm Optimization) with adaptive factor for automatic adjust of momentum coefficient. The simulation on IEEE 30-bus system shows that,the proposed method reduces action times of compensatory devices and transformer taps,in which the switching time of capacitors at bus 12 is reduced from six to two,and the daily active power loss of the system is reduced from 1.241 3 p.u. to 1.1554 p.u..
出处 《电力自动化设备》 EI CSCD 北大核心 2007年第1期31-35,共5页 Electric Power Automation Equipment
关键词 电力系统 动态无功优化 负荷分段 粒子群算法 power system dynamic reactive power optimization load dividing PSO
  • 相关文献

参考文献9

二级参考文献63

  • 1文福拴,韩祯祥.模拟进化优化方法在电力系统中的应用综述(上)[J].电力系统自动化,1996,20(1):59-62. 被引量:18
  • 2邓佑满,张伯明,田田.虚拟负荷法及其在配电网络动态优化中的应用[J].中国电机工程学报,1996,16(4):241-244. 被引量:45
  • 3[1]Hus H Y , Kuo H C. Dispatch of capacitors on distribution system using dynamic programming[J]. IEE PROCEEDINGS-C, 1993, 140(6):433-438.
  • 4[2]Lu Fengchang , Hsu Yuanyih. Fuzzy dynamic programming approach to reactive power/voltage control in a distribution substation[J]. IEEE Transactions on Power Systems, 1997, 12(2):681-688.
  • 5[5]Hsu Yuanyih , Lu Fengchang. A combined artificial neural network-fuzzy dynamic programming approach to reactive power/voltage control in a distribution substation[J]. IEEE Transactions on Power Systems, 1998, 13(4):1265-1271.
  • 6[1]KENNEDY J,EBERHART R. Particle swarm optimization [A]. IEEE Int'l Conf. on Neural Networks[C]. Perth,Australia:IEEE, 1995. 1942-1948.
  • 7[2]EBERHART R,KENNEDY J. A new optimizer using particle swarm theory [A]. Proc. of the sixth international Symposium on Micro Machine and Human Science[C]. Nagoya, Japan: [ s.n. ], 1995.39- 43.
  • 8[3]SHI Yu-hui,EBERHART R. Parameter selection in particle swarm optimization[A]. Proc. of the 7th Annual Conf. on Evolutionary Programming[C]. Washington DC: [s.n.], 1998. 591-600.
  • 9[5]SHI Y,EBERHART R. A modified particle swarm optimizer[A]. IEEE World Congress on Computational Intelligence[C]. [s.1.]: IEEE, 1998.1951-1957.
  • 10[6]CLERC M,KENNEDY J. The particle swarm-explosion,stability,and convergence in a multidimensional complex space[J]. IEEE Trans. on Evolutionary Computation,2002,6(1) :58-73.

共引文献854

同被引文献294

引证文献26

二级引证文献257

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部