期刊文献+

一种实用的火电厂飞灰含碳量软测量建模方法 被引量:3

A practical soft-sensing modeling algorithm of the carbon content in fly ash for power plant
在线阅读 下载PDF
导出
摘要 提出了同时利用自适应加权融合和最小二乘支持向量机建模的实用新方法。首先,给出了基于小波的自适应加权融合和最小二乘支持向量机算法;其次,将BP神经网络、最小二乘支持向量机和基于小波的自适应加权融合的最小二乘支持向量机算法进行建模精度比较;最后,采用真实火电厂飞灰含碳量数据进行模型验证与预测,仿真结果表明基于小波的自适应加权融合的最小二乘支持向量机算法具有较好的建模精度和实用性。 A novel-modeling algorithm,which is based on adaptive weighted fusion and least square support vector machine (LSSVM),is proposed.Firstly,Adaptive weighted fusion based on wavelet and LSSVM algorithms are designed.Secondly,BP neural network,LSSVM and LSSVM based on wavelet and adaptive weighted fusion algorithms are used to modeling.Finally,for real data of the carbon content in fly ash for power plant,the simulation results show that LSSVM based on wavelet and adaptive weighted fusion algorithm has better precision of the modeling and practicability.
出处 《自动化与仪器仪表》 2010年第6期112-115,共4页 Automation & Instrumentation
基金 邯郸市科学技术局资助项目(0824201092-3)
关键词 自适应加权融合 最小二乘支持向量机 软测量 飞灰含碳量 建模 adaptive weighted fusion LSSVM soft-sensing the carbon content in fly ash modeling
  • 相关文献

参考文献2

二级参考文献20

  • 1叶美盈.基于最小二乘支持向量机建模的混沌系统控制[J].物理学报,2005,54(1):30-34. 被引量:10
  • 2于静江,周春晖.过程控制中的软测量技术[J].控制理论与应用,1996,13(2):137-144. 被引量:147
  • 3Gonzalez G D. Soft sensors for processing plants [A]. Proceeding of the Second International Conference on Intelligent Processing and Manufacturing of Materials [C], 1999, 1:59 -69.
  • 4Gonzalez G D, Redard J P, Barrera R, Fernandez M. Issues in soft-sensor applications in industrial plants [A]. Proceeding of IEEE International Symposium on Industrial Electronics [C], 1994, 380 -385.
  • 5Vapnik V N. The Nature of statistical Learning Theory [M]. New York: Springer-Verlag, 1995. First Edition.
  • 6Vapnik V N. The Nature of statistical Learning Theory [M]. New York: Springer-Verlag, 1999. Second Edition.
  • 7Suykens J A K, Vandewalle J. Least squares support vector machines classifiers [J]. Neural Network Letters, 1999, 19(3): 293-300.
  • 8Bishop C M. Neural Networks for Pattern Reorganization [M].Oxford University Press, 1995.
  • 9V N Vapnik,S E Golowich.A.Smola.Support Vector Method for Function Approximation,Regression Estimation,and Signal Processing[C].In Advances in Neural information processings systems 8,San Mateo,CA,1996.Morgan Kaufmann Publishers.
  • 10J Y Zhu,B Ren,H X Zhang.Time Series Prediction via New Support Vector Machine[C].Proceedings of the First International Conference on Machine Learning and Cybernetics,2002:364-366.

共引文献105

同被引文献44

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部