期刊文献+

基于支持向量回归算法的汽轮机热耗率模型 被引量:34

Model for the Turbine Heat Rate Based on the Support Vector Regression
在线阅读 下载PDF
导出
摘要 利用支持向量回归算法,建立了汽轮机热耗率计算模型。介绍了支持向量回归算法的原理,对算法中的参数选择进行了探讨。对某300MW机组汽轮机热耗率计算进行了建模,并与RBF神经网络回归模型进行了比较。结果表明:基于支持向量回归算法的模型具有较强的泛化能力,适于在线应用。通过对输入参数添加随机扰动量分析表明,该模型比传统计算模型具有更好的稳定性,能更准确地计算汽轮机热耗率。 A calculation model of steam turbine heat rate is founded by using Support Vector Regression (SVR). The algorithm of SVR is represented and parameter selection of the algorithm is discussed. Calculation model of heat rate for a 300 MW steam turbine is built, which is compared with the model of hear rate based on RBF. it is indicated that the model based on SVR has more forcible generalization ability and can be applied on-line. The analyzing through adding a random distrubance quantity to input parameter indicates that this model has better stability than conventional method and can calculate the heat rate of steam turbine more accurately. It is an effective method for modeling the operating performance of the steam turbine. Figs 5, table 1 and refs 8.
出处 《动力工程》 EI CSCD 北大核心 2007年第1期19-23,49,共6页 Power Engineering
关键词 动力机械工程 汽轮机 热耗率 支持向量机 回归分析 power and mechanical engineering steam turbine heat rate support vector machine regression analysis
  • 相关文献

参考文献8

二级参考文献38

共引文献160

同被引文献343

引证文献34

二级引证文献292

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部