期刊文献+

相同材质区域建筑冷负荷预测模型 被引量:2

Prediction model of cooling load for community buildings with uniform material
在线阅读 下载PDF
导出
摘要 针对区域建筑冷负荷预测中影响因素过多、区域规划阶段建筑数据不完备等问题,通过分析建筑冷负荷的组成及影响因素,认为具有相同朝向或朝向角相差90°且具有相同建筑材质的矩形区域建筑可整合为能表征其外扰冷负荷分布的特征建筑。对上海地区两区域建筑的冷负荷进行了模拟计算,并与整合后的特征建筑的冷负荷进行了比较,结果显示,特征建筑与该区域建筑有相同的单位体积冷负荷分布,区域建筑冷负荷预测可以转化为其特征建筑的冷负荷预测。 Aiming at multitudinous influence factors on community building cooling load prediction and Absence of enough data of buildings in community planning,based on the analysis of composition of building cooling load and influence factors,considers that the community characteristic building,which represents the outer cooling load,can be acquired by integrating rectangular buildings in the community with uniform orientation or 90° angle mutually and uniform envelope materials.Simulates the cooling load of two communities in Shanghai,and compares them with those of the integrated characteristic buildings.The results show that the cooling loads per unit volume of the community and its characteristic building present the same distribution.So community building cooling load prediction can be translated into that of corresponding characteristic building.
机构地区 同济大学
出处 《暖通空调》 北大核心 2010年第10期71-75,共5页 Heating Ventilating & Air Conditioning
基金 美国能源基金会资助项目(编号:G-0805-10156)
关键词 区域建筑 冷负荷预测 建筑整合 特征建筑 单位体积冷负荷 community building cooling load prediction building integration characteristic building cooling load per unit volume
  • 相关文献

参考文献12

  • 1龙惟定,白玮,张改景,苑翔.区域建筑能源规划:建筑节能基础[J].建设科技,2008(6):60-63. 被引量:16
  • 2Vrachopoulos M G,Filios A E,Fatsis A,et al.Determination of the thermal and cooling needs of the broader region of Athens[J].Renewable Energy,2008,33(12):2615-2622.
  • 3Hou Zhijian,Lian Zhiwei,Yao Ye.Cooling-load prediction by the combination of rough set theory and an artificial neural-network based on data-fusion technique[J].Applied Energy,2006,83(9):1033-1046.
  • 4Masatoshi Sakawa,Kosuke Kato,Satoshi Ushiro.Cooling load prediction in a district heating and cooling system through simplified robust filter and multilayered neural network[J].Applied Artificial Intelligence,2001,15(7):633-643.
  • 5石磊,王锦,王智伟,刘咸定.预测参数的选择与建筑物逐时冷负荷的预测[J].西安科技学院学报,2003,23(1):23-26. 被引量:13
  • 6Pedersen L,Stang J,Ulseth R.Load prediction method for heat and electricity demand in buildings for the purpose of planning for mixed energy distribution systems[J].Energy and Buildings,2008,40(7):1124-1134.
  • 7Dotzauer E.Simple model for prediction of loads in district-heating systems[J].Applied Energy,2002,73(3):277-284.
  • 8夏令操.浅析日本区域供冷供热的负荷预测[J].暖通空调,2009,39(2):93-95. 被引量:18
  • 9Chow T T,Fong K F,Chan A L S,et al.Energy modeling of district cooling system for new urban development[J].Energy and Buildings,2004,36(11):1153-1162.
  • 10Chow T T,Chan A L S,Song C L.Building-mix optimization in district-cooling system implementation[J].Applied Energy,2004,77(1):1-13.

二级参考文献12

  • 1日本空気調節衛生工学会.空気調節設備設計篇空気調節衛生工学会便覽[M].13版.東京,2001
  • 2日本區域供冷供熱協会.區域供冷供熱技術手册[M].新版.東京,2002
  • 3[1]Matsuo Y, et al. Study on typical weather data. Journal of the Society of Heating, Air-conditioning and Sanitary Engineers of Japan, 1974,48(7)
  • 4[2]Akasaka H. Typical weather data and the expanded AMEDAS data. Solar Energy, 1999,25(5)
  • 5[3]National Climatic Data Center. Typical meteorological year user's guide. NCDC, National Oceanic and Atmospheric Administration, US Dept of Commerce, Asheville NC, 1981
  • 6[4]Lang S W, Huang Y J . Energy conservation standard for space heating in Chinese urban residential building. Energy, the Int J, 1993
  • 7[5]National Climatic Data Center. International surface weather observations 1982-1997. Volumes 1 through 5, jointly produced by NCDC, National Oceanic and Atmospheric Administration, US Dept of Commerce, Asheville NC, and the Air Force Combat Climatology Center(AFCCC), US Dept of Air Force, Asheville NC, 1998
  • 8[6]ASHRAE. ASHRAE handbook of fundamentals. American Society of Heating, Refrigeration and Air-Conditioning Engineers, Atlanta, GA, USA, 1997
  • 9[7]Matsuo Y, et al. Development of typical weather data of Shanghai with the world weather. Annual Meeting, Architectural Institute of Japan, Tokyo, Japan, 1993
  • 10[8]Yang H X . Measured hourly solar data for Beijing, Guangzhou and Harbin 1993. Hong Kong Polytechnic University, 1993

共引文献226

同被引文献16

引证文献2

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部