期刊文献+

基于数据符号化表示和云模型的时序数据生成方法 被引量:2

Approach for generating time series datasets based on symbolic representation of data and cloud model
在线阅读 下载PDF
导出
摘要 为得到可靠的仿真数据,提出一种基于数据符号化表示和云模型的时序数据生成方法。首先用SFVS算法将原数据或是数据的先验知识(很多时候仅能获得相关领域的一些知识而非数据)表达为一个符号矢量,然后用定性定量转换工具——云模型利用符号矢量产生相应的时序数据。仿真实验表明,该方法产生的数据具有与原数据一样的结构特征、知识蕴涵,并具有可控的随机性、复杂性。 In order to generate reliable synthetic datasets, this paper proposed a method based on the symbolic representation of the original data and cloud model. Firstly,the original data or the knowledge about the data( we often can only get the knowledge of the domain)was symbolic represented with the SFVS algorithm, and then generated synthetic dataset by using the symbolic vector as input by the cloud model. Simulation experiments demonstrate that the characters and the connotative knowledge of the synthetic data set are the same as the original data' s, moreover, the randomicity as well as the complexity of the synthetic data set is controllable.
出处 《计算机应用研究》 CSCD 北大核心 2010年第10期3691-3693,3697,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(60872113)
关键词 时序数据 符号化表示 符号化统计特征矢量 云模型 云发生器 time series data symbolic representation statistical feature vector symbolic ( SFVS ) cloud model cloud generator
  • 相关文献

参考文献10

  • 1IBM Alamaden Research Center. Quest synthetic data generation code [EB/OL]. [ 2007-01-20 ]. http ://www. almaden.ibm. com/cs/projects/iis/hdb/Projects/data_minge/ming.shtml.
  • 2LIN P J,SAMADI B,CIPOLONE A,et al. Development of a synthetic data set generation for building and testing information discovery system[ C]//Proc of the 3rd International Conference on Information Technology : New Generations. Washington DC : IEEE Computer Society ,2006:707-712.
  • 3杜鷁,李德毅.一种测试数据挖掘算法的数据源生成方法[J].计算机研究与发展,2000,37(7):776-782. 被引量:16
  • 4魏伟杰,张斌,王波,张明卫.一种用于数据挖掘算法的数据生成方法[J].东北大学学报(自然科学版),2008,29(3):328-331. 被引量:7
  • 5LKHAGVA B, SUZUKI Y, KAWAGOE K. Extend SAX: extension of symbolic aggregate approximation for financial time series data representation[ C]//Proc of the 17th DEWS. 2006.
  • 6钟清流,蔡自兴.基于统计特征的时序数据符号化算法[J].计算机学报,2008,31(10):1857-1864. 被引量:30
  • 7李德毅,刘常昱.论正态云模型的普适性[J].中国工程科学,2004,6(8):28-34. 被引量:931
  • 8YANKOV D, KEOGH E, REBBAPRAGADA U. Disk aware discord discovery :finding unusual time series in terabyte sized datasets [ J ]. Knowledge and Information Systems,2008,17(2) :241-262.
  • 9http://hexx. biog. hexun, com/12630508_d.html[EB/OL].
  • 10BERNDT D J, CLIFFORD J. Using dynamic time warping to find patterns in time series [ C ]//Proc of the KDD Workshop. 1994:359-370.

二级参考文献36

  • 1李德毅,孟海军,史雪梅.隶属云和隶属云发生器[J].计算机研究与发展,1995,32(6):15-20. 被引量:1334
  • 2Das G,Proc of the4th Int’ l Conf on Knowledge Discovery and Data Mining( KDD-98),1998年,16页
  • 3Cheung D W L,Proc of the 12 th Int’ l Conf on Data Engineering,1996年,106页
  • 4李德毅 淦文燕 刘璐莹.人工智能与认知物理学 [A]..中国人工智能进展2003[C].北京: 北京邮电大学出版社,2003.6-14.
  • 5Zadeh L A. Fuzzy sets [J]. Information and Control, 1965, ( 8): 338~353
  • 6Ross T J. Fuzzy Logic with Engineering Applications [M]. Bei jing:Publishing House of Electronics Industry, 2001
  • 7Russell B. Vagueness [J]. Australasian Journal of Psychology and Philosohys, 1923, (1): 84~92
  • 8Black M. Vagueness [J]. Philosophy of Science. 1937, (4): 422~431
  • 9Pawlak Z. Roughsets [J]. International Journal of Computer and Information Science, 1982, (11): 341~356
  • 10李德毅 王晔 吕辉军.知识发现机理研究 [A].见:钟义信编.CAAI-9(全国第九届人工智能年会)论文集《中国人工智能进展:2001》 [C].北京:北京邮电大学出版社,2001.314-324.

共引文献974

同被引文献16

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部