期刊文献+

基于模糊聚类的小波变换图像去噪算法改进 被引量:5

IMPROVING DENOISING ALGORITHM FOR FUZZY CLUSTERING-BASED WAVELET TRANSFORM IMAGE
在线阅读 下载PDF
导出
摘要 介绍一种改进的较优的基于模糊聚类的小波变换图像去噪算法。首先分析了模糊C均值聚类算法中加权指数m的重要性,采用基于模糊决策的方法,分别构造模糊目标和模糊约束,由模糊目标和模糊约束的交集来共同确定最优的加权指数m以获取较为理想的聚类分类结果。再利用该种加权模糊聚类算法把小波系数划分成包含信号与只包含噪声的小波系数两类,将只包含噪声的小波系数置为零,将包含信号的小波系数利用软阈值法进行收缩,最后对处理后的系数根据M带小波变换的局部时频分析能力及其良好的信噪分离能力进行M带小波变换,得到去噪效果较好的图像。 This article introduces an improved acceptably good denoising algorithm for fuzzy clustering-based wavelet transform image. First of all, we analysed the importance of weighted index m in fuzzy c-means clustering algorithm, in which fuzzy decision-making method is applied to constructing fuzzy goals and fuzzy constraints. Then, the intersection of fuzzy goals and fuzzy constraints determines jointly the opti- mal weighted index m in order to obtain better classification results of clustering. After that, the weighted fuzzy clustering algorithm is used again to divide wavelet coefficients into two types -- the wavelet coefficients with signal and the wavelet coefficients with noise only. The latter will be assigned zero, and the former will be shrunk using soft threshold method. At last, the processed coefficients are executed M-band wavelet transform according to the abilities of local time-frequency analysis and good noise separation of the M-band wavelet transform to get the images with fairly good denoising effect.
作者 张焰林
出处 《计算机应用与软件》 CSCD 2010年第8期133-135,171,共4页 Computer Applications and Software
基金 浙江省教育厅科研项目(Y200805669)
关键词 模糊聚类 M带小波 图像去噪 Fuzzy clustering M-band wavelet Image denoising
  • 相关文献

参考文献4

二级参考文献29

  • 1彭玉华.一种改进的小波变换阈值去噪方法[J].通信学报,2004,25(8):119-123. 被引量:41
  • 2欧阳迎春,欧阳春娟.一种新型的权值裁剪模糊中值滤波去噪算法[J].江西师范大学学报(自然科学版),2005,29(1):31-33. 被引量:5
  • 3彭玉华,汪文秉.小波用于估测散射波波达时间及去噪[J].电子学报,1996,24(4):113-116. 被引量:18
  • 4田勇,敦建征,马义德,夏春水,吴记群.小波变换与PCNN在图像处理中的比较与结合[J].甘肃科学学报,2006,18(4):53-55. 被引量:8
  • 5[1]Chang S G,Yu B,Vetterli M.Spatially Adaptive Wavelet Thresholding with Context Modeling for Image Denoising[M].IEEE Transactions on Image Processing[J].2000,9(9):1 522-1 531.
  • 6[2]P.-L Shui and Z.Bao.M-band Biorthogonal Interpolating Wavelets Via Lifting Scheme[J].IEEE Trans.Signal Process-ing,52(9):2 500-2 512.
  • 7[3]F.Abramovich,T.Sapatinas,and B.W.Silverman.Wavelet thresholding via a Bayesian Approach[J].J.R.Statist.Soc.,ser.B,1998,60:725-749.
  • 8[4]Lakhwinder K,Saveta G,Chauhan R C.Image Denoising Using Wavelet Thresholding[J].IEEE Image Processing,2000,(9):1522-1 530.
  • 9[5]Mihcak M K,Kozinsev I,Ramchandran K,et al.Low-complex-ity Image Denoising Based on Statistical Modeling of Wavelet Coefficients[J].IEEE Signal Processing Letters,1999,7(6):300-303.
  • 10[6]D.L.Donoho,De-Noising by Soft Thresholding[J].IEEE Trans.Info.Theory,1993,43:933-936.

同被引文献47

  • 1任获荣,余望好.基于M带小波变换与模糊聚类的图像去噪算法[J].红外技术,2004,26(4):36-40. 被引量:2
  • 2徐炜,贺占庄,宋军,黄士坦,杨靓.基于SAR图像滤波的小波模糊聚类算法[J].吉林大学学报(信息科学版),2004,22(4):426-429. 被引量:2
  • 3Heijmans A M, Goutsias J. Nonlinear multiresolution signal de- composition schemes-Part Ⅱ: Morphological wavelets [ J ]. IEEE Trans on hnage Processing,2000,9( 11 ) :1897-1913.
  • 4Yao K C, Mignotte M, Collet C. Unsupervised segmentation using a self-organizing map and a noise model estimation in sonar imagery[ J ]. Pattern Recognition,2000,33 : 1575 -1584.
  • 5Pothen A,Simon H D, Liou K P. Partitioning sparse matrices with eigenvectors of graphs [ J ]. SIAM Journal of Matrix Analysis and Applications, 1990,11 ( 3 ) :430 -452.
  • 6田间,陈善学.小波图像去噪的一种小波改进算法[J].重庆邮电大学学报(自然科学版),2007,19(4):492-494. 被引量:9
  • 7Li Wang, Nandita Bhattacharjee, Gopal Gupta, et al. Adap- tive approach to fingerprint image enhancement [C] //Procee- dings of the 8th International Conference on Advances in Mobile Computing and Multimedia, 2010: 42-49.
  • 8Wang Fujian, Xu Yiren, Zhao Yuming, et al. A new nonli- near interpolation algorithm for edge preserving [C] //1EEE Mulimedia Technology, 2010: 29-31.
  • 9Kang Jiayin, Zhang Wenjuan. Fingerprint image segmenta- tion using modified fuzzy C-means algorithm [J].IEEE Bioin- formatics and Biomendical Engineering, 2009, 6: 1-4.
  • 10Balti A, Sayadi M, Fnaiech F. Segmentation and enhance- ment of fingerprint images using K-means fuzzy C-mean algo- rithm and statistical features [C] //Communications, Com- puting and Control Applications, 2011 : 1-5.

引证文献5

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部