期刊文献+

第四类Hua结构上的Einstein-Khler度量

The Einstein-Khler metric on hua construction of the fourth type
在线阅读 下载PDF
导出
摘要 令HCIV表示第四类Hua结构,本文根据构造出的辅助方程X=X(Z,ξ,η)将非线性的复Monge-Ampére方程化为一常微分方程,从而得到了度量的生成函数,进而得到了HCIV的Einstein-Kahler度量,并进一步给出了在特殊情况下非齐性域HCIV完备Einstein-Khler度量的显表达式. Let HCIV be the Hua construction of the fourth type.In this paper,we reduce the higher dimensional non-linear complex Monge-Ampére equation for the metric to an ordinary differential equation in the auxiliary X=X(Z,ξ,η).We give the generating function of the Einstein-Khler metric on HCIV.Then we give the explicit forms of the complete Einstein-Khler metrics on HCIV when in some special cases,while in this cases HCIV are the non-homogeneous domains.
作者 孔姗姗
出处 《苏州大学学报(自然科学版)》 CAS 2010年第3期22-28,共7页 Journal of Soochow University(Natural Science Edition)
关键词 Einstein-Khler度量 Hua结构 辅助方程 Einstein-Khler meric Hua construction holomorphic sectional curvature.
  • 相关文献

参考文献6

二级参考文献19

  • 1Cheng S Y, Yau S T. On the existence of a complete Kaehler metric on non-compact complex manifolds and the regularity of Fefferman's equation. Comm Pure Appl Math, 1980, 33:507-544.
  • 2Mok N, Yau S T. Completeness of the Kaehler-Einstein metric on bounded domain and the characterization of domain of holomorphy by curvature conditions. Proc Symposia Pure Math, 1983, 39:41-59.
  • 3Bland J. The Einstein-Kaehler metric on {|z|^2+|w|^2p< < 1}. Michigan Math J, 1986, 33:209-220.
  • 4Heins M. On a class of conformal metrics. Nagoya Math J, 1962, 21:1-60.
  • 5Fefferman C. The Bergman kernel and biholomorphlc mappings of pseudoconvex domains [J]. Invent Math.,1974, 26: 1-65.
  • 6Bergman S. Zur Theorie von pseudokonformen Abbildungen [J], Mat Sb(N S), 1936, 1(1): 79-96.
  • 7D'Angelo John P. A note on the Bergman kernel [J]. Duke Math. J., 1978, 45(2): 259-265.
  • 8D'Angelo John P. An explicit computation of the Bergman kernel function [J].J. Geomitric Analysis, 1994,(1): 23-34.
  • 9Zinov'ev B S. On reproducing kernels for multiclrcular domains of holomorphy [J]. Siberian Math. J., 1974,15: 24-33.
  • 10Francsics G, Hanges N. The Bergman kernel of complex ovals and multivariable hypergeometric functions[J]. J. Funct Anal., 1996, 142(2): 495-510.

共引文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部