摘要
令HCIV表示第四类Hua结构,本文根据构造出的辅助方程X=X(Z,ξ,η)将非线性的复Monge-Ampére方程化为一常微分方程,从而得到了度量的生成函数,进而得到了HCIV的Einstein-Kahler度量,并进一步给出了在特殊情况下非齐性域HCIV完备Einstein-Khler度量的显表达式.
Let HCIV be the Hua construction of the fourth type.In this paper,we reduce the higher dimensional non-linear complex Monge-Ampére equation for the metric to an ordinary differential equation in the auxiliary X=X(Z,ξ,η).We give the generating function of the Einstein-Khler metric on HCIV.Then we give the explicit forms of the complete Einstein-Khler metrics on HCIV when in some special cases,while in this cases HCIV are the non-homogeneous domains.
出处
《苏州大学学报(自然科学版)》
CAS
2010年第3期22-28,共7页
Journal of Soochow University(Natural Science Edition)