期刊文献+

基于EMD-ARMA模型的飞行器健康诊断 被引量:1

Health diagnosis for aircraft based on EMD-ARMA
在线阅读 下载PDF
导出
摘要 为了有效地对飞行器的健康状况进行诊断,将EMD-ARMA模型引入到飞行器健康诊断中,提出基于AR-MA(n,n-1)模型参数的健康诊断方法.采用EMD模型将飞行器关键部件的声发射信号进行分解,得到多个内禀模态分量IMF,选取包含主要信息的IMF分量建立ARMA(n,n-1)模型,采用长自回归模型法进行参数估计,得到模型主要的自回归参数,绘出模型参数的细化图用以健康诊断.对某型号真实飞行器关键结构部件的健康监测实验表明,该方法可以有效地诊断出飞行器关键结构部件的疲劳裂纹. To effectively diagnose the aircraft structure components health status,a new kind of health diagnosis approach for the aircraft,based on EMD and ARMA model,is proposed in this paper.The advanced acoustic emission technique is used to monitor the aircraft stabilizer health state and get the AE information.And the AE signal is decomposed into the limited IMF by the EMD.Then the first two IMF components were used to set up ARMA (n,n-1) model with the method of long autoregressive model.Then we can get the auto-regressive parameters of the ARMA model,further we can draw the thinned figures of the auto-regressive parameters to diagnose the health status of aircraft.Experiments show that this method can effectively monitor the fatigue crack of the aircraft structure components.
出处 《大庆石油学院学报》 CAS 北大核心 2010年第2期108-112,共5页 Journal of Daqing Petroleum Institute
基金 航空科学基金资助项目(2007ZD54006)
关键词 ARMA模型 EMD 长自回归算法 健康诊断 ARMA model EMD U-C method health diagnosis
  • 相关文献

参考文献6

  • 1Babacan S D,Sayood K.Predictive image compression using conditional averages[C].IEEE Proceedings Data Compression Conference,Snowbird,UT,USA,2004:523-524.
  • 2Simard P Y,Mallard H S,Rinker J.A foreground backgrounds separation algorithm for image compression[C].IEEE Proceedings of Data Compression Conference,Snowbird,UT,USA,2004:498-507.
  • 3李志农,何永勇,吴昭同,褚福磊.ARMA模型盲辨识仿真研究及其在机械故障诊断中的应用[J].振动与冲击,2006,25(1):122-125. 被引量:6
  • 4王振龙.时间序列分析[M].北京:中国统计出版社,2002.
  • 5Huang N E.The empirical mode decomposition and the hilbert spectrum for nonlinear and non stationary time series analysis[J].Proc R Soc Lond A,1998:454(5):903-995.
  • 6Huang N E,Shen Z,Long S R.A new view of nonlinear water waves:the hilbert spectrum[J].Fluid Mech.,1999,31(3):417-457.

二级参考文献10

共引文献35

同被引文献10

  • 1Nair S,Rajaram R,Meyers A. Acoustic and ion sensing of lean blowout in an aircraft combustor simulator[J].American Institute of Aeronautics and Astronautics,2005,(05):1-8.
  • 2Lambert D A. A blueprint for higher-level fusion systems[J].Information Fusion,Elsevier Science,2009,(01):6-24.
  • 3Yang S J,Stotz A,Holsopple J. High level information fusion for tracking and projection of multistage cyber attacks[J].Information Fusion,Elsevier Science,2009,(01):107-121.
  • 4Sycera K,Glinton R,Yu Bin. An integrated approach to high-level information fusion[J].Information Fusion,Elsevier Science,2009,(01):25-50.
  • 5Aran O,Burger T,Caplier A. A belief-based sequential fusion approach for fusing manual signs and non-manual signals[J].Pattern Recognition,2009,(05):812-822.
  • 6Vemula M,Bugalb M F,Djuric P M. Sensor self-localization with beacon position uncertainty[J].Signal Processing,2009,(06):1144-1154.
  • 7姜雪丽,裴峻峰,卢群辉,朱恩全.基于ANFIS和铁谱磨粒分析的泥浆泵故障诊断[J].流体机械,2008,36(6):46-49. 被引量:2
  • 8崔建国,郑新起,邱楠,王明卓,徐长君,徐光延.基于EMD包络谱的飞行器健康诊断[J].压电与声光,2009,31(6):807-810. 被引量:2
  • 9李明,税爱社,宋政辉,李林.基于广义回归神经网络的传感器故障诊断研究[J].传感器与微系统,2009,28(12):17-20. 被引量:8
  • 10邹伟,刘兵,孙倩.多源信息融合能力评估关键技术综述[J].计算机与数字工程,2010,38(3):1-5. 被引量:23

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部