期刊文献+

多Agent动态调度方法在染色车间调度中的应用 被引量:12

Multi-agent dynamic scheduling method and its application to dyeing shops scheduling
在线阅读 下载PDF
导出
摘要 为解决复杂、繁琐的染色车间调度问题,根据印染生产过程的工艺特点和约束条件,建立了染色车间作业调度问题模型。为了提高调度系统对生产环境经常发生变化的自适应能力和全局优化能力,提出了一种基于蚂蚁智能与强化学习相结合的协商策略的多Agent动态调度方法。在该方法中,智能Agent能根据行为的历史反馈和立即反馈来选择相应的行为,也能根据算法的历史奖励来选择相应的智能调度算法,从而把一小部分工序任务的实时局部优化和大部分工序任务的全局优化结合起来。调度实例的求解结果验证了该方法的有效性。 Based on the process characteristics and restrictions of production process in dyeing industry,the dyeing workshop scheduling model was presented to solve the complicated scheudling problems.To adapt to the dynamic production environment changes and improve the global optimization performance of the scheduling system,a multi-agent dynamic scheduling method of coordination mechanism based on ant intelligence and reinforcement learning was proposed.In this method,intelligent agent selected the appropriate behavior in accordance with the historical feedback and immediate feedback,and also selected the appropriate intelligent scheduling algorithm based on the historical incentives of the algorithms so that the local optimization of a small portion of the real-time tasks was combined with the global optimization of other tasks.The scheduling examples results showed that the optimization assignment of dyeing jobs was dynamically realized via the intelligent decision-making of the agent.As compared with the contract net protocol,the communication amount was decreased and the efficiency of the system was improved.
出处 《计算机集成制造系统》 EI CSCD 北大核心 2010年第3期611-620,共10页 Computer Integrated Manufacturing Systems
基金 国家863计划资助项目(2007AA04Z155) 国家自然科学基金资助项目(60874074) 浙江省自然科学基金资助项目(Y1090592)~~
关键词 调度 多AGENT系统 染色车间 蚂蚁智能 强化学习 scheduling multi-agent system dyeing shops ant intelligence reinforcement learning
  • 相关文献

参考文献18

  • 1戴智杰,宋执环,宋春跃.基于遗传算法的浸染生产排缸策略[J].运筹与管理,2006,15(2):149-153. 被引量:15
  • 2VANCZA J,MARKUS A.An agent model for incentive-based production schedulingCJ].Computers in Industry,2000,43 (2):173-187.
  • 3WALSH W E,WELLMAN M P,WURMAN P R,et al.S-ome economics of market-based distributed scheduling[C]//Proceedings of the 18th IEEE International Conference on Distributed Computing Systems.Washington,D.C.,USA:IEEE,1998:612-621.
  • 4PAUL V,HADELI,BART S G,et al.MAS coordination and control based on stigmergy[JJ.Computers in Industry,2007,58(7):621-629.
  • 5YU X,RAM B.Bio-inspired scheduling for dynamic Job Shops with flexible routing and sequence-dependent setups[J].International Journal of Production Research,2006,44 (22):4793-4813.
  • 6XIANG W,LEE H P.Ant colony intelligence in multi-Agent dynamic manufacturing scheduling[J].Engineering Application of Artificial Intelligence,2008,21(1):73-85.
  • 7KARUNA H,PAUL V,MARTIN K,et al.Multi-Agent coordination and control using stigmergy[J].Computers in Industry,2004,53(1):75-96.
  • 8SHEN Weiming.Distributed manufacturing scheduling using intelligent agents[J].IEEE Intelligent Systems,2002,17(1):88-94.
  • 9XU Xinli,WANG Xiangli,WANG Wanliang.Improved Job-Shop scheduling method based on multi-agent[J].WSEAS Transactions on Information Science and Applications,2006,3 (7):1308-1315.
  • 10BARBARA H-R.Architectural foundations for real-time performance in intelligent Agents[J].The Real-Time Systems,1990,2(1/2):99-125.

二级参考文献14

  • 1Kanji U,Annals CIRP,1997年,46卷,1期,343页
  • 2FOO Y P S, TAKEFUJI Y. Stochastic neural networks for solving job-shop scheduling (part 1): problem representation [C]//Proc of IEEE Int Conf on Neural Networks. San Diego, CA: IEEE Press,1988:275 - 282.
  • 3FOO Y P S, TAKEFUJI Y. Stochastic neural networks for solving job-shop scheduling (parts Ⅱ). architecture and simulations [C]//Proc of IEEE lnt Conf on Neural Networks. San Diego, CA: IEEE Press, 1988:283 - 290.
  • 4AIHARA K, TAKABE T, TOYODA M. Chaotic neural networks[J]. Physics Letter A, 1990, 144 (6/7): 333- 340.
  • 5INOUE M, NAGAYOSHI A. A chaos neuro-computer [J]. Physics Letter A, 1991,158 (8): 373 - 376.
  • 6CHEN L, AIHARA K. Chaotic simulated annealing by a neural network model with transient chaos [J]. Neural Networks, 1995,8(6):915 - 930.
  • 7徐新黎 王万良 张聚.用神经计算机求解作业车间调度问题[M].,..
  • 8Larranaga P Cindy,Kuijpers M H,Roberto Murga H.Yosu yurramendi learning bayesian network structures by searching for the best ordering with genetic algorithms[J].IEEE transactions on systems,man and cybernetics-PART A:SYSTEM AND HUMANS july,1996,26(4):487-493.
  • 9Hong Tzung-Pei,Wang Tzu-Ting.A Heuristic palmer-based fuzzy flexible flow-shop scheduling algorithm[A].1999 IEEE international fuzzy systems conference proceedings[C].Seoul,Korea:IEEE,August,1999.22-25,1492-1497.
  • 10Xiao Wendong,Hao Peifeng,Zhang Sen,Xu Xinhe.Hybrid flow shop scheduling using genetic algorithms[A].Proceedings of the 3rd world congress on intelligent control and automation[ C].Hefei,P.R.China:IEEE,June 28-July,2000.2:536-541.

共引文献22

同被引文献168

引证文献12

二级引证文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部