期刊文献+

基于多维分配和灰色理论的航迹关联算法 被引量:22

Track Correlation Algorithm Based on Multi-dimension Assignment and Gray Theory
在线阅读 下载PDF
导出
摘要 针对目前应用于分布式多传感器系统中航迹关联算法只能解决两局部节点航迹相关的问题,该文提出了一种基于多维分配的灰色航迹关联算法。该算法运用灰色理论获取各传感器航迹间的灰色关联度,以此关联度为多传感器系统的全局统计量构造多维灰色关联度矩阵,并根据此矩阵形成的多维分配问题的解获得各传感器航迹间的关联结果。仿真结果表明,在密集目标环境下和/或交叉、分岔及机动航迹较多的场合,该算法的性能明显优于传统方法,其正确关联率较灰色航迹关联算法提高了大约8.8%。 To resolve the problem of track correlation in distributed multi-sensor system,a track correlation algorithm based on multi-dimension assignment and gray theory is presented in this paper. Firstly,gray theory is applied to acquire a global statistical vector in the distributed multi-sensor system. Then,a multi-dimension gray similar degree matrix is build according to the global statistical vector. Based on this matrix,the track correlation results can be got by a multi-dimension assignment method. At last,the algorithm is compared with gray track correlation algorithm. The simulation results show that the performance of the algorithm here is much better than that of the gray track correlation algorithm in dense multi-target environments,more cross,split and maneuvering track situations. In this situations,its correct correlation rate is improved about 8.8 percent over that of the gray track correlation algorithm.
出处 《电子与信息学报》 EI CSCD 北大核心 2010年第4期898-901,共4页 Journal of Electronics & Information Technology
基金 国家自然科学基金(60801049)资助课题
关键词 数据融合 航迹关联 灰色理论 多维分配 Data Fusion Track correlation Gray theory Multi-dimension assignment
  • 相关文献

参考文献11

  • 1Martin E L, David L H, and James L. Handbook of Multisensor Data Fusion: Theory and Practice (2 Ed.). CRC Press, 2008: 7-8.
  • 2Kaplan L M, Blair W D, and Bar-Shalom Y. Simulations studies of multisensor track association and fusion methods. Aerospace Conference IEEE, Big Sky, MT, 2006: 1-16.
  • 3Singer R A and Kanyuck A T. Computer control of multiple site track data. Automation, 1971, 7(3): 455-463.
  • 4Ditzler W R.. A demonstration of multisensor tracking. Proceedings of the 1987 Tri-Service Data Fusion Symposium, JHU/APL, Laurel, Md., June 1987: 303-311.
  • 5Oul E. On the track similarity test in track splitting algorithm. IEEE Transactions on Aerospace and Electronic System, 1994, 30(2): 604-606.
  • 6李晓峰,王强.改进的“最近邻”航迹相关算法研究[J].电子科技,2008,21(7):44-46. 被引量:9
  • 7何友,田宝国.基于神经网络的广义经典分配航迹关联算法[J].航空学报,2004,25(3):300-303. 被引量:11
  • 8黄晓冬,何友,赵峰.几种典型情况下的航迹关联研究[J].系统仿真学报,2005,17(9):2085-2088. 被引量:11
  • 9张丙军,何红,张冲,张永明.分布式多传感器多目标航迹关联处理算法研究[J].兵工自动化,2008,27(12):24-26. 被引量:6
  • 10Kenefic R J. Local and remote track file registration using minimum description length. IEEE Transactions on Aerospace and Electronic System, 1993, 29(3): 651-655.

二级参考文献33

  • 1何友,彭应宁,陆大.多传感器数据融合模型综述[J].清华大学学报(自然科学版),1996,36(9):14-20. 被引量:88
  • 2郭治.现代火控理论[M].北京:国防工业出版社,1992.
  • 3Singer R A, Kanyuck A T. Computer control of multiple site track data[J]. Automation, 1971,7(3):455-463.
  • 4Bar-Shalom Y, Fortmann T E. Tracking and data association[M]. New York:Academic Press,1988.
  • 5Kosoka M.A track correlation algorithm for multisensor intergration[A].Proceeding of the IEEE/AIAA 5th Digital Avionics System Conf[C].1983.
  • 6Chang C B, Youens L C. Measurement correlation for multiple sensor tracking in a dense target enviroment[J]. IEEE Trans, 1982, AC-27(6):1250-1252.
  • 7Hopfield J J. Neural networks and physical systems with emergent collective computational abilities[J]. Pro Natl Acad Sci USA,1982,79:2554-2558.
  • 8Hopfield J J. Neurons with graded response have collective computational properties like those of two-state neurons[J]. Pro Natl Acad Sci, 1984,81:3088-3092
  • 9D L Hall. Mathematical techniques in multisensor data fusion[M].Artech House, Boston London, 1992.
  • 10J.Linas, E Waltz. Mutisensor data fusion[M] Artech House,Massachusetts, 1990.

共引文献32

同被引文献227

引证文献22

二级引证文献84

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部