期刊文献+

基于伪点迹的多传感器异步航迹关联算法 被引量:9

Algorithm for Multi-Sensor Asynchronous Track Association Based on Pseudo Measurement
在线阅读 下载PDF
导出
摘要 在多传感器信息系统中,来自不同传感器的局部航迹往往是异步的,针对此问题,提出了一种基于伪点迹的异步航迹关联算法。首先利用点迹重构技术将异步航迹进行时间对准,然后再利用经典分配的方法对各局部航迹进行了配对,从而达到异步航迹关联的目的。仿真结果证明此方法能很好地解决多传感器异步航迹关联的问题,关联正确率接近90%。 In the multi-sensor information system, the local tracks from different sensors are always asynchronous. To solve the problem, this paper presented a multi-sensor asynchronous track association algorithm. First, the technology of pseudo measurement is used to synchronize tracks. Then local tracks are assigned by using classical assignment algorithm. The simulation result illustrates that this new algorithm can solve the problem of asynchronous track association effectively, and the association correct rate approaches 90%.
出处 《传感技术学报》 EI CAS CSCD 北大核心 2006年第3期878-881,共4页 Chinese Journal of Sensors and Actuators
基金 航空基础科学基金资助项目(05D53021) 西北工业大学电子信息学院研究生创新实验室资助
关键词 多传感器 异步航迹关联 伪点迹 计算机仿真 multi-sensor asynchronous track association pseudo measurement computational simulation
  • 相关文献

参考文献6

  • 1Y. Bar-Shalom. On the Track-to-Track Correlation Problem[J]. IEEE Transactions on Automatic Control, TAC 26 (2),1981:571-572.
  • 2Y. Bar-Shalom and Li Xiao-rong. Multitarget-Multisensor Tracking : Principles and Techniques [M]. Storrs : CTYBS Publishing , 1995:429-468.
  • 3Singer R A,Kanyuck A T. Compute Control of Multiple Site Track Data Correlation[J]. Automation, 1971,7(3):455-463.
  • 4Bra-Shalom Y,Campo L The Effect of the Common Process.IEEE Trans, 1986, AES-22 (6) : 803-805.
  • 5Chang C B, Youens L C. Measurement Correlation for Multiple Sensor Tracking in a Dense Target Environment. IEEE TAC-27 ,6(1982) : 1250-1252.
  • 6何友,田宝国.基于神经网络的广义经典分配航迹关联算法[J].航空学报,2004,25(3):300-303. 被引量:11

二级参考文献9

  • 1何友,彭应宁,陆大.多传感器数据融合模型综述[J].清华大学学报(自然科学版),1996,36(9):14-20. 被引量:88
  • 2Singer R A, Kanyuck A T. Computer control of multiple site track data[J]. Automation, 1971,7(3):455-463.
  • 3Bar-Shalom Y, Fortmann T E. Tracking and data association[M]. New York:Academic Press,1988.
  • 4Kosoka M.A track correlation algorithm for multisensor intergration[A].Proceeding of the IEEE/AIAA 5th Digital Avionics System Conf[C].1983.
  • 5Chang C B, Youens L C. Measurement correlation for multiple sensor tracking in a dense target enviroment[J]. IEEE Trans, 1982, AC-27(6):1250-1252.
  • 6Hopfield J J. Neural networks and physical systems with emergent collective computational abilities[J]. Pro Natl Acad Sci USA,1982,79:2554-2558.
  • 7Hopfield J J. Neurons with graded response have collective computational properties like those of two-state neurons[J]. Pro Natl Acad Sci, 1984,81:3088-3092
  • 8何友,陆大,彭应宁,高志永.多传感器数据融合系统中两种新的航迹相关算法[J].电子学报,1997,25(9):10-14. 被引量:46
  • 9何友,谭庆海,蒋蓉蓉.多传感器综合系统中的航迹相关算法[J].火力与指挥控制,1989,14(1):1-12. 被引量:36

共引文献10

同被引文献51

  • 1朱洪艳,韩崇昭,韩红,文戎.分布式多传感信息融合系统的异步航迹关联方法[J].控制理论与应用,2004,21(3):453-456. 被引量:12
  • 2孙志刚.仅有角度量测的红外机动目标跟踪[J].激光与红外,2004,34(6):449-451. 被引量:8
  • 3黎新伍.基于MRF模型和EM算法的多源图像融合方法[J].传感技术学报,2006,19(2):525-529. 被引量:5
  • 4李峰,徐毓.雷达网数据处理[M].武汉:空军雷达学院,2004.
  • 5Zhou Y, Leung H. Sensor alignment with earth-centered earth - fixed (ECEF) coordinate system [ J ]. IEEE AES, 1999,35 (2) :410 -417.
  • 6Benoit A, Swierstra S. Ground-based 4D guidance of flights in strong winds[J]. The Journal of Navigation, 1990, 43 (2) :176 - 186.
  • 7蔡元龙.模式识别[M].西安:西安电子科技大学,1992.
  • 8Stephen C. Stubberud. , Kathleen A. Kramer, J. Antonio Geremia. Analysis of the Effects of Bearings-Only Sensors on the Performance of the Neural Extended Kalman Filter Tracking System [C]// IEEE International Conference, Turkey, 14-16 July 2008.
  • 9Deb S , et al. A Multisensor-Multitarget Data Association Algorithm for Heterogeneous Sensors [J]. IEEE Trans on Aerospace and Electronic Systems, 1993, 29(2):560-568.
  • 10Mark L Krieg , Douglas A Gray. Multisensor Probabilistic Multihypothesis Tracking Using Dissimilar Sensor [C]// SHE, Vol. 3086, 1997, 129-138.

引证文献9

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部