期刊文献+

低码率图像的快速SV拟合及其最优码流结构的描述方法

Low Bit-rate Image Description Based on Rapid Support Vector Fitting and Its Generation of Optimal Bit Stream Structure
在线阅读 下载PDF
导出
摘要 给出了一个在低码率图像描述中应用最优支持向量(SV)描述的编码算法,提出一个训练样本集缩减策略,在支持向量机(SVM)模型中用于快速拟合重要的交流(AC)系数,它能够在基本保持原有精度的前提下,有效地提高SVM的回归速度,减少输出参数;提出了直流(DC)系数的按位差分预测编码方法和压缩性能更好的码流产生方法。实验结果表明,该方法不仅缩减了编码时间,而且在相同码率下能获得更好的图像质量。以往基于SV的编码未提及码流结构的描述方法,而快速SV拟合和数据组织方法克服了以往算法可行性差的缺点。 In this paper, an encoding algorithm based on optimal SV (support vector) fitting was presented for low bit-rate image description. The main contributions include: 1) a sample set shrinking strategy was suggested for fast simulation of the most significant AC coefficients in SVM (support vector machine) model. With almost the same accuracy as that of the traditional SVM approximation, the shrinking operation improved the regression speed and reduced the numbers of output parameter. 2) a BBB-DP(bit-by-bit differential prediction) method was suggested for DCs coding, the generation method of optimal bit stream was also proposed. Experiments demonstrated that our method saved coding time, while can acquire images of improved quality images at the same bit-rate. Unlike the previous SV coding, this rapid fitting based method is more feasible and describes the bit-stream structure in detail.
出处 《中国图象图形学报》 CSCD 北大核心 2010年第4期547-556,共10页 Journal of Image and Graphics
基金 国家自然科学基金(60972133) 广东省自然科学基金团队项目(9351064101000003) 广东省能源技术重点实验室项目(2008A060301002)
关键词 极低码率图像压缩 支持向量回归 样本集缩减 按位差分预测 数据流描述 low bit-rate compression, support vector regression (SVR), sample set shrinking, bit-by-bit differentiate prediction(BBB-DP) , data stream description
  • 相关文献

参考文献11

  • 1Robinson J, Kecman V. The use of support vectors in image compression[ C ]//Proceedings of the 2th International Conference on Engineering Intelligent Systems. Scotland, U. K: ICSC, 2000: 93-96.
  • 2Robinson J, Kecman V. Combining support vector machine learning with the discrete cosine transform in image compression [ J]. IEEE Transactions on Neural Networks, 2003, 141 (4) : 950-958.
  • 3Robinson J. The Application of Support Vector Machines to Compression of Digital Images [ D ]. New Zealand: School of Engineering, University of Auckland, 2004.
  • 4Tolambiya A, Kalra P. K. WSVM with morlet wavelet kernel for image compression [ C ]//Proceedings of the IEEE International Conference on System of Systems Engineering. Piscataway, New Jersey, USA: IEEE, 2007: 1-5.
  • 5赵楠楠,孙红星,徐心和.基于小波变换和SVM的图像压缩仿真研究[J].系统仿真学报,2006,18(11):3034-3037. 被引量:16
  • 6毕德学,于德敏,许增朴.基于核变换的高性能支持向量机分类算法[J].中国图象图形学报,2008,13(10):1845-1848. 被引量:1
  • 7Li Zhang, Wei Dazhou, Li Chengjiao. Wavelet support vector machine [ J ]. IEEE Transaction on Systems, Man, and Cybernetics, 2004, 341 ( 1 ) : 34-39.
  • 8Chen Jiaming, Li Lei, Nie Lingye. Wavelet image compression by using hybrid kernel SVM [ C ]//Proceedings of the 7th International Conference on Machine Learning and Cybernetics. Piscataway, New Jersey, USA: IEEE, 2008, (5):3056-3060.
  • 9Mumtaz A, Gilani S A M, Jameel T. A novel color image retrieval system based on dual tree complex wavelet transform and support vector machines[ C ]//Proceedings of the 10th IEEE International Muhitopic Conference. Piscataway, N J, USA: IEEE, 2006: 163- 168.
  • 10Cristianini N, Taylor J S. An Introduction to Support Vector Machines and Other Kernel-based Learning Methods [ M ]. Cambridge :Cambridge University Press, 2000.

二级参考文献22

  • 1张翔,肖小玲,徐光祐.模糊支持向量机中隶属度的确定与分析[J].中国图象图形学报,2006,11(8):1188-1192. 被引量:38
  • 2I Hadzic,V Kecman.Support vector machines trained by linear programming:theory and application in image compression and date classification[C]// 5th Seminar on Neural Network Applications in Electrical Engineering.Sep.2000:18-23.
  • 3J Robinson,V Kecman.Combining support vector machine learning with the discrete cosine transform in image compression[J].IEEE Transactions on Neural Networks (S1045-9227),2003,14(4):950-958.
  • 4A Said,W A Pearlman.A new,fast,and efficient image codec based on set partitioning in hierarchical trees[J].IEEE Trans.Circ.Syst.Video Tech (S1051-8215),1996,6(3):243-250.
  • 5V N Vapnik.The Nature of Statistical Learning Theory[M].New York:Springer-Verlag,1995.
  • 6K I Kim,K Jung,J H Kim.Texture-based approach for text detection in images using support vector machines and continuously adaptive mean shift algorithm[J].IEEE Trans pattern analysis and machine intellgence (S0018-9340),2003,25(12):1631-1639.
  • 7V N Vapnik,S Golowich,A Smola.Support vector Method for Function Approximation,Regression Estimation and Signal Processing[C]//Advances in Neural Information Processing Systems,Cambridge,MA:MIT Press,1997,9,281-287.
  • 8W Sweldens.The lifting scheme:A custom-design construction of biorthogonal wavelets[J].Appl.Comput.Harmon Anal (S 1063-5203),1996,3(2):186-200.
  • 9S Mallat.A theory for multiresolution signal decomposition:The wavelet representation[J].IEEE Trans.Pattern Anal.Machine Intell (S0018-9340),1989,11(7):674-693.
  • 10JPEG 2000.[Online] Available:http://www.jpeg.Org/JPEG2000.htm.

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部