期刊文献+

小波技术在时域有限差分法中的应用

Application of Wavelet in FDTD
在线阅读 下载PDF
导出
摘要 在时域有限差分法(FDTD)中利用小波变换技术进行数据压缩,提高了计算效率,同时节省计算存储空间。利用小波分解对惠更斯表面的时域切向场分布进行分解,存储经过阈值量化后的小波系数达到压缩编码的目的。在FDTD近场计算结束后,利用小波重构所得到的惠更斯表面的时域切向场分布进行近—远场变换计算散射场。结合小波变换的FDTD法计算缝隙金属平板的散射场的数值实验结果说明该方法的有效性。 An application of wavelet in FDTD compressed data, which improved the calculation efficiency and saved the memory of computers. The time domain field distribution on the surface of Huygens' box was decomposed using wavelet, and the quantified coefficient of the wavelet decomposition was saved. After the calculation of FDTD was finished, the time domain field distribution was reconstructed using the wavelet reconstruction. And the far field patterns were predicted by the near-to-far field transform. A metallic flat slab with a slot was employed to validate the proposed scheme.
出处 《系统仿真学报》 EI CAS CSCD 北大核心 2007年第17期3951-3954,共4页 Journal of System Simulation
关键词 FDTD 惠更斯表面 小波分解 小波重构 FDTD Huygens' surface .wavelet decomposition wavelet reconstruction
  • 相关文献

参考文献12

  • 1Yee K S, Ingham D, Shlager D. Time-domain extrapolation to the far field based on FDTD calcinations [J]. IEEE Trans. on Antennas and Propagation (S0018-926X), 1991, 39(3): 410-413.
  • 2R J Luebbers, K S Kunz, M Schneider, et al. A finite-difference time-domain near zone to far zone transformation [J]. IEEE Trans. on Antennas and Propagation (S0018-926X), 1991, 39(3 ): 429-433.
  • 3Baixin Zhou, Sicong Wang, Wenhua Yu. An Efficient Approach to Predict Far Field Pattern in FDTD Simulation [J]. IEEE Antennas and Wireless Propagation Letters (S1536-1225), 2004, 3: 148-151.
  • 4G Strang, T Nguyen. Wavelets and Filter Banks [M]. Wellesley, MA: Wellesley-Cambridge Press, 1996.
  • 5Moerloose J De, Zutter D DE. Surface integral representation radiation boundary condition for the FDTD method [J]. IEEE Trans. on Antennas and Propagation (S0018-926X), 1993, 41(11): 890-895.
  • 6Sullivan D, Young J L. Far field time domain calculation from aperture radiators using the FDTD method [J]. IEEE Trans. on Antennas and Propagation (S0018-926X), 2001, 49(3): 464-469.
  • 7Steinberg B Z, Leviatan Y. On the Use of Wavelet Expansions in the Method of Moments [J]. IEEE Trans. on Antennas and Propagation (S0018-926X), 1993, 41(5): 610-619.
  • 8Wang G F. On the Utilization Periodic Wavelet Expansions in the Moments Methods [J]. IEEE. Trans. on Antennas and Propagation (S0018-926X), 1995, 43(10): 2495-2498.
  • 9Steinberg B Z, Leviatan Y. A Multiresolufion Study of Two Dimensional Scattering by Metallic Cylinders [J]. IEEE Trans. on Antennas and Propagation (S0018-926X), 1996, 44(4): 572-578.
  • 10彭玉华,董晓龙,汪文秉,高静怀.小波变换在电磁场数值计算中的应用[J].电子学报,1996,24(12):46-52. 被引量:8

二级参考文献10

  • 1彭玉华,Proc of iCCEA’94,1994年
  • 2I Hadzic,V Kecman.Support vector machines trained by linear programming:theory and application in image compression and date classification[C]// 5th Seminar on Neural Network Applications in Electrical Engineering.Sep.2000:18-23.
  • 3J Robinson,V Kecman.Combining support vector machine learning with the discrete cosine transform in image compression[J].IEEE Transactions on Neural Networks (S1045-9227),2003,14(4):950-958.
  • 4A Said,W A Pearlman.A new,fast,and efficient image codec based on set partitioning in hierarchical trees[J].IEEE Trans.Circ.Syst.Video Tech (S1051-8215),1996,6(3):243-250.
  • 5V N Vapnik.The Nature of Statistical Learning Theory[M].New York:Springer-Verlag,1995.
  • 6K I Kim,K Jung,J H Kim.Texture-based approach for text detection in images using support vector machines and continuously adaptive mean shift algorithm[J].IEEE Trans pattern analysis and machine intellgence (S0018-9340),2003,25(12):1631-1639.
  • 7V N Vapnik,S Golowich,A Smola.Support vector Method for Function Approximation,Regression Estimation and Signal Processing[C]//Advances in Neural Information Processing Systems,Cambridge,MA:MIT Press,1997,9,281-287.
  • 8W Sweldens.The lifting scheme:A custom-design construction of biorthogonal wavelets[J].Appl.Comput.Harmon Anal (S 1063-5203),1996,3(2):186-200.
  • 9S Mallat.A theory for multiresolution signal decomposition:The wavelet representation[J].IEEE Trans.Pattern Anal.Machine Intell (S0018-9340),1989,11(7):674-693.
  • 10JPEG 2000.[Online] Available:http://www.jpeg.Org/JPEG2000.htm.

共引文献102

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部