期刊文献+

基于梯度信息的C-V模型图像分割算法 被引量:6

Image segmentation method of C-V model based on bradient information
原文传递
导出
摘要 针对传统的C-V模型对于含有多灰度级目标的图像难以准确分割并且分割速度缓慢等问题,提出了在C-V模型中引入梯度信息的图像分割算法。该算法在C-V模型的偏微分方程中加入了基于梯度信息的加速因子和弱目标边界控制力,加速因子的引入可以显著地提高C-V模型的分割速度,弱目标边界控制力可以有效地防止弱目标边界泄漏和漏分割。实验结果表明:该算法能够有效分割出弱目标和提高图像分割速度。 The traditional C-V model can not accurately segment an image including multi-gray level objects and the segmentation speed is slow.In order to solve the problems,an image segmentation algorithm based on C-V model and gradient information is proposed.The algorithm introduces a speedup item and a weak object boundary control force in the partial differential equation of C-V model.The speedup item can effectively improve the segmentation speed,and the weak object boundary control force can avoid the weak objects boundary leaking and omitting segmentation.Experimental results demonstrate that the proposed algorithm can effectively segment the weak objects and reduce the segmentation time.
出处 《光电子.激光》 EI CAS CSCD 北大核心 2010年第3期452-455,460,共5页 Journal of Optoelectronics·Laser
基金 国家自然科学基金资助项目(60672128)
关键词 C-V模型 水平集方法 梯度 偏微分方程 C-V model level set method gradient partial differential equation
  • 相关文献

参考文献9

  • 1Mumford D, Shah J. Optimal approximations by piecewise smooth functions and associated variational problems [J]. Communications on Pure and Applied Mathematics, 1989,42 (5) :577-685.
  • 2Osher S, Sethian J A. Fronts propagating with curvature dependent speed:Algorithms based on Hamilton-Jacobi formulations[J].Journal of Computational Physics, 1988,79 ( 1 ) : 12- 49.
  • 3Malladi R,Sethian J A,Vemuri B C. Shape modeling with front propagation: A level set approach[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995,17 (2): 158- 175.
  • 4Chart F T, Vese L. Active contours without edges[J]. IEEE Transactions on Image Processing, 2001,10(2) ; 266-277.
  • 5侯叶,郭宝龙.基于图切割与C-V模型的运动目标分割[J].光电子.激光,2008,19(12):1662-1665. 被引量:6
  • 6李俊,杨新,施鹏飞.基于Mumford-Shah模型的快速水平集图像分割方法[J].计算机学报,2002,25(11):1175-1183. 被引量:125
  • 7Suk-Ho Lee,Jin Keun Seo. Level set-based bimodal segmentation with stationary global minimum[J]. IEEE Transactions on Image Processing, 2006,15 (9) : 2843-2852.
  • 8鲜海滢,李晓峰,李在铭.基于梯度相关性的红外微弱目标检测[J].光电子.激光,2008,19(9):1214-1219. 被引量:4
  • 9陈波,赖剑煌.用于图像分割的活动轮廓模型综述[J].中国图象图形学报,2007,12(1):11-20. 被引量:54

二级参考文献63

共引文献179

同被引文献35

  • 1Kass M,Witkin A,Terzopoulos D.Snakes:active contour models[J].International Journal of Computer Vision,1988,2(1):321-331.
  • 2Chan T,Vese L.Active contours without edges[J].IEEE Transactions on Image Processing,2001,10(2):266-277.
  • 3Vese L,Chan T.A multiphase level set framework for image segmentation using the Mumford and Shah model[J].International Journal of Computer Vision,2002,50(1):271-293.
  • 4Li Chunming,Xu Chenyang,Gui Changfeng.Level set evolution without re-initialization:a new variational formulation[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition.San Diego,CA,USA:[s.n.],2005:430-436.
  • 5Li Chunming,Kao C Y,Gore J C,et al.Implicit active contours driven by local binary fitting energy[C]//IEEE Conference on Computer Vision and Pattern Recognition.Minnesota,USA:[s.n.],2007:1-7.
  • 6Stauffer C,Grimson W.Learning patterns of activity using real-time tracking[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2000.22(8):747-757.
  • 7Kass M,Witkin A,Terzopoulos D.Snakes:Active contour models[J].International Journal of Computer Vision,1988,2(1):321-331.
  • 8Vese L,Chan T.A multiphase level set framework for image segmentation using the mumford and shah model[J].International Journal of Computer Vision,2002,50(1):271-293.
  • 9Li Chunming,Xu Chenyang,Gui Changfeng.Level set evolution without re-initialization:A new variational formulation[C]//Proc of IEEE Computer Society Conference on Computer Vision and Pattern Recognition,San Diego,CA,USA,2005.
  • 10Chan T,Vese L.Active contours without edges[J].IEEE Transactions on Image Processing,2001,10(2):266-277.

引证文献6

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部