期刊文献+

用于图像分割的活动轮廓模型综述 被引量:54

Active Contour Models on Image Segmentation:A Survey
在线阅读 下载PDF
导出
摘要 图像分割和边界提取对于图像理解、图像分析、模式识别、计算机视觉等具有非常重要的意义,而活动轮廓模型(Active Contour Model)则是图像分割和边界提取的重要工具之一,它主要包括参数活动轮廓模型和几何活动轮廓模型两类。相对于参数活动轮廓模型,几何活动轮廓模型具有很多的优点,如计算的简单性和在变形的过程中能够处理曲线的拓扑变化,等等。近年来,几何活动轮廓模型在理论和应用方面的研究都有很大的发展,令人关注。为了使人们对这一技术有一概略了解,首先提出了一种新的分类方式用来描述参数活动轮廓模型、几何活动轮廓模型以及它们之间的联系,然后通过重点分析几个经典的活动轮廓模型及其算法实现来综述活动轮廓模型的研究、发展及其应用情况,最后指出了进一步进行活动轮廓模型理论与应用研究的方向。 Image segmentation and boundary extraction are very important in the fields of image understanding, image analysis, pattern recognition and computer vision et al, while active contour model is one of the most important tools in the areas of image segmentation and boundary extraction which mainly includes parametric active contour model and geometric active contour model. Geometric active contour model has many advantages over parametric active contour model, such as computational simplicity and the ability to change curve topology during deformation, et al. Therefore, significant advances have been made in theories and applications of geometric active contour model recently. In order to show the general idea of this technique, a novel classified mode is developed to describe the parametric active contour model, geometric active contour model and the relationship between them at first in this paper. Moreover, by analyzing several classical active contour models, this paper summarizes the research, development and applications of active contour model. Finally, this paper points out future research orientations on the theories and applications research of active contour model.
作者 陈波 赖剑煌
出处 《中国图象图形学报》 CSCD 北大核心 2007年第1期11-20,共10页 Journal of Image and Graphics
基金 国家自然科学基金项目(60373082) 教育部科学技术重点项目(105134)
关键词 图像分割 活动轮廓模型 变分方法 水平集方法 可加算子分裂算法 image segmentation, active contour model, variational calculus, level set methods, additive operator splitting (AOS) scheme
  • 相关文献

参考文献45

  • 1Kass M,Witkin A,Terzopoulos D.Snakes:Active contour odels[J].International Journal of Computer Vision,1987,1 (4):321 -331.
  • 2李培华,张田文.主动轮廓线模型(蛇模型)综述[J].软件学报,2000,11(6):751-757. 被引量:125
  • 3Jain A K,Zhong Y,Jolly M P D.Deformable template models:A review[J].Signal Processing,1998,71(2):109 - 129.
  • 4Mcinerney T,Terzopoulos D.Deformable models in medical image analysis:A survey[J].Medical Image Analysis,1996,1 (2):91 - 108.
  • 5Jacob M,Blu T,Unser M.Efficient energies and algorithms for parametric Snakes[J].IEEE Transactions on Image Processing,2004,13(9):1231 - 1244.
  • 6Xu C,Prince J L.Snakes,shapes,and gradient vector flow[J].IEEE Transactions on Image Processing,1998,7(3):359 - 369.
  • 7Gao J,Kosaka A,Kak A.A deformable model for human organ extraction[A].In:Proceedings of International Conference on Image Processing[C],Chicago,IL,USA,1998:323-327.
  • 8Menet S,Saint-Mark P,Medioni G.B-Snakes:Implementation and application to stereo[A].In:Proceedings of Image Understanding Workshop[C],Pittsburgh,Penn,USA,1990:720 -726.
  • 9Brigger P,Hoeg J,Unser M.B-spline snakes:A flexible tool for parametric contour detection[J].IEEE Transactions on Image Processing,2000,9 (9):1484 - 1496.
  • 10Staib L H,Duncan J S.Boundary fitting with parametrically deformable models[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1992,14(11):1061 - 1075.

二级参考文献69

  • 1蒋晓悦,赵荣椿.B—样条子波在图像边缘检测中的应用[J].中国体视学与图像分析,2002,7(4):198-201. 被引量:8
  • 2李培华,张田文.主动轮廓线模型(蛇模型)综述[J].软件学报,2000,11(6):751-757. 被引量:125
  • 3章毓晋.图像处理和分析[M].清华大学出版社,1999,3..
  • 4李俊.基于曲线演化的图像分割方法及应用:博士学位认文[M].上海:上海交通大学,2001..
  • 5Amini A A, Weymouth T E, Jsin R C. Using dynamic programming for solving variational problems in vision [J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 1989, 12(9): 855-867.
  • 6Blake A, Yuille A. Active Vision [M]. London: The MIT Press, 1992. 3-20.
  • 7Peterfrend N. Robust tracking of position and velocity with Kalmen snakes [J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 1999, 21(6) : 564-569.
  • 8Blake A, Isard M, Reynard D. Learning to track the visual motion of contours [J]. Artificial Intelligence, 1995, 78( 1 ):179-212.
  • 9Isard M, Blake A. Condensation-conditional density propagation for visual tracking [J]. International Journal of Computer Vision, 1998, 29(1): 5-28.
  • 10Chert Yunqiang, Rui Y, Huang T S. Parametric contour tracking using unscented Kalman filter [A]. In: Proceedings of the International Conference on Image Processing, Rochester, New York, 2002. 421-428.

共引文献271

同被引文献669

引证文献54

二级引证文献234

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部