期刊文献+

一类优化问题的分解算法

Decomposition algorithm on a class of optimization problems
原文传递
导出
摘要 讨论一类大规模系统的优化问题,提出一种递阶优化方法.该方法首先将原问题转化为多目标优化问题,证明了原问题的最优解在多目标优化问题的非劣解集中,给出了从多目标优化问题的解集中挑出原问题最优解的算法,建立了算法的理论基础.仿真结果验证了算法的有效性. The optimization problem for a class of large scale systems is considered. A hierarchical optimization method is proposed, which converts the original problem into multi-objective optimization problem. It is proved that the optimal solution of the original nonseparable problem is in the set of solutions of multi-objective optimization problem. An algorithm is given, which can select out the optimal solution of the original nonseparable optimization problem from the set of solutions of muhiobjective optimization problem. Theoretical base of the algorithm is established. Simulation result shows effectiveness of the algorithm.
作者 邢进生
出处 《控制与决策》 EI CSCD 北大核心 2010年第1期84-88,共5页 Control and Decision
基金 国家自然科学基金项目(60574060) 山西省自然科学基金项目(2006011039)
关键词 大系统 分解-协调算法 多目标优化 Large scale system Decomposion-coordinating principle algorithm Multi-objective optimization
  • 相关文献

参考文献3

二级参考文献18

  • 1刘芳,杨海潮.参数可调的克隆多播路由算法[J].软件学报,2005,16(1):145-150. 被引量:16
  • 2雷德明,吴智铭.基于个体密集距离的多目标进化算法[J].计算机学报,2005,28(8):1320-1326. 被引量:23
  • 3周树德,孙增圻.分布估计算法综述[J].自动化学报,2007,33(2):113-124. 被引量:214
  • 4Zitzler E, Deb K, Thiele L. Comparison of multiobjective evolutionary algorithms.. Empirical results [J]. Evolutionary Computation, 2000, 8(2): 173-195.
  • 5Srinivas N, Deb K. Multiobjective optimization using nondominated sorting in genetic algorithms[J]. Evolutionary Computation, 1994, 2(3): 221-248.
  • 6Knowles J D, Corne D W. The pareto archived evolution strategy: A new baseline algorithm for pareto multiobiective optimization[C]. Congress on Evolutionary Computation. Piscataway: IEEE, 1999: 98-105.
  • 7Zitzler E, Thiele L. Multiobjective evolutionary algorithms: A comparative case study and the strength pareto approach[J]. IEEE Trans on Evolutionary Computation, 1999, 3(4):257-271.
  • 8Zitzler E, Laumanns M, Thiele L. SPEA2: Improving the strength pareto evolutionary algorithm[R]. Zurich: Computer Engineering and Networks Laboratory (TIK), Swiss Federal Institute of Technology (ETH) Zurich, 2001.
  • 9Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J].IEEE Trans on Evolutionary Computation, 2002, 6(2): 182- 197.
  • 10Farhang-Mehr A, Azarm S. Diversity assessment of pareto optimal solution sets:An entropy approach[C]. Proc of the 2002 Congress on Evolutionary Computation. Piscataway: IEEE, 2002:723-728.

共引文献139

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部