期刊文献+

约束优化进化算法 被引量:119

Constrained Optimization Evolutionary Algorithms
在线阅读 下载PDF
导出
摘要 约束优化问题是科学和工程应用领域经常会遇到的一类数学规划问题.近年来,约束优化问题求解已成为进化计算研究的一个重要方向.从约束优化进化算法=约束处理技术+进化算法的研究框架出发,从约束处理技术和进化算法两个基本方面对约束优化进化算法的研究及进展进行了综述.此外,对约束优化进化算法中的一些重要问题进行了探讨.最后进行了各种算法的比较性总结,深入分析了目前约束优化进化算法中亟待解决的问题,并指出了值得进一步研究的方向. Constrained optimization problems (COPs) are mathematical programming problems frequently encountered in the disciplines of science and engineering application. Solving COPs has become an important research area of evolutionary computation in recent years. In this paper, the state-of-the-art of constrained optimization evolutionary algorithms (COEAs) is surveyed from two basic aspects of COEAs (i.e., constraint-handling techniques and evolutionary algorithms). In addition, this paper discusses some important issues of COEAs. More specifically, several typical algorithms are analyzed in detail. Based on the analyses, it concluded that to obtain competitive results, a proper constraint-handling technique needs to be considered in conjunction with an appropriate search algorithm. Finally, the open research issues in this field are also pointed out.
出处 《软件学报》 EI CSCD 北大核心 2009年第1期11-29,共19页 Journal of Software
基金 国家自然科学基金Nos.60805027, 60234030, 60673062, 90820302 湖南省院士基金No.06IJY3035 中南大学研究生学位论文创新基金 No.1373-74334000016~~
关键词 进化算法 约束处理技术 约束优化 多目标优化 约束优化进化算法 evolutionary algorithm constraint-handling technique constrained optimization multi-objective optimization constrained optimization evolutionary algorithms
  • 相关文献

参考文献4

二级参考文献122

  • 1[1]Himmelblau, D.M. Applied Nonlinear Programming. New York: McGraw-Hill, Inc., 1972.
  • 2[2]Goldberg, D.E. Genetic Algorithms in Search, Optimization and Machine Learning. Readings, MA: Addison-Wesley Publishing Company, 1989.
  • 3[3]Michalewicz, Z., Schoenauer, M. Evolutionary algorithms for constrained parameter optimization problems. Evolutionary Computation Journal, 1996,4(1):1~32.
  • 4[4]Powell, D., Skolnick, M. Using genetic algorithms in engineering design optimization with nonlinear constraints. In: Forest, S., ed. Proceedings of the 5th International Conference on Genetic Algorithms. San Mateo, CA: Morgan Kaufmann Publishers, 1993. 424~430.
  • 5[5]Deb, K., Agrawal, S. A niched-penalty approach for constraint handling in genetic algorithms. In: Montana, D., ed. Proceedings of the ICANNGA-99. Portoroz, Slovenia, 1999. 234~239.
  • 6[6]Schoenauer, M., Michalewicz, Z. Boundary operators for constrained optimization problems. In: Baeck, T., ed. Proceedings of the 7th International Conference on Genetic Algorithms. San Mateo, CA: Morgan Kaufmann Publishers, 1997. 322~329.
  • 7[7]Michalewicz, Z., Nazhiyath, G., Michalewicz, M. A note on usefulness of geometrical crossover for numerical optimization problems. In: Angeline, P., Baeck, T., eds. Proceedings of the 5th Annual Conference on Evolutionary Programming. Cambridge, MA: MIT Press, 1996. 325~331.
  • 8[8]Michalewicz, Z. Genetic Algorithms+Data Structures=Evolution Programs. 3rd ed., New York: Springer\|Verlag, 1996.
  • 9[1]Koziel S, Michalewicz Z. Evolutionary algorithms, homomorphous mappings and constrained parameter optimization[J]. Evolutionary Computation, 1999, 7 (1): 19-44.
  • 10[2]Whitley D. An overview of evolutionary algorithms: Practical issues and common pitfalls[J]. Information and Software Technology, 2001, 43(14): 817-831.

共引文献399

同被引文献1127

引证文献119

二级引证文献682

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部