期刊文献+

结合Nystrm逼近的图半监督纹理图像分割 被引量:3

Graph semi-supervised texture image segmentation combined with Nystrm
在线阅读 下载PDF
导出
摘要 针对半监督学习算法在图像分割中的应用,提出了一种基于流形插值的半监督图像分割方法。该方法将分类问题看作一个流形上的函数的插值问题,通过优化某些系数来更好地拟合数据。该算法采用稀疏图可解决大规模矩阵特征值和特征向量的求解。但是,对于图像分割来说,构造稀疏图的运算时间较长,针对这一问题,提出采用Nystrm逼近方法来降低计算复杂度。合成纹理图像分割结果验证了该算法可获得良好的分割质量,结合Nystrm逼近方法在保证分割质量的前提下从很大程度上提高了计算效率。 To extend the application of semi-supervised learning in image segmentation, an image segmentation method based on the manifold is proposed. This approach interprets the classification problem as a problem of interpolating a function on a manifold. Some coefficients are adjusted to provide the optimal fit to the data. The algorithm makes use of sparse adjacency matrix, which makes solving eigenvector problems for big matrix possible. However, it takes long time to construct the sparse adjacency matrix for image segmentation. To reduce computational complexity, an approach is proposed based on the Nystrom method, a numerical solution of eigenfunetion problems. Experimental results of synthetic texture images segmentation indicate that the proposed method achieves good quality and using Nystrom method improves the computational efficiency to a great degree.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2009年第12期2820-2825,共6页 Systems Engineering and Electronics
基金 国家自然科学基金(60672126 60803097) 国家高技术研究发展计划(863计划)(2007AA12Z223 2008AA01Z125) 教育部重点项目(108115)资助课题
关键词 纹理图像分割 半监督学习 谱聚类 Nystrm逼近 texture image segmentation semi-supervised learning spectral clustering Nystrm approximation
  • 相关文献

参考文献13

  • 1Shi J, Malik J. Normalized cuts and image segmentation[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2000, 22(8):888-905.
  • 2Cozman F G, Cohen I, Cirelo M C. Semi-supervised learning of mixture models[C]//Proc, of the 20th International Conference on Machine Learning, 2003:99 -106.
  • 3Sindhwani V, Keerthi S, Chapelle O. Deterministic annealing for semi-supervised kernel machines [ C ] // Proc. of the 23rd International Conference on Machine Learning, 2006, 6 : 841 - 848.
  • 4Zhou Z H, Li M. Tri-training: exploiting unlabeled data using three classifiers [J]. IEEE Trans. on Knowledge and Data Engineering, 2005, 17 : 1529 - 1541.
  • 5I Belkin M, Matveeva I, Niyogi P. Regularization and semi-supervised learning on large graphs [C] // Conference on Learning Theory, 2004.
  • 6Chapelle O, Weston J, Scholkopf B. Cluster kernels for semisupervised learning[C]//Advances in Neural Information Pro cessing Systems, 2003, 15 : 585 - 592.
  • 7Smola A J, Kondor R I. Kernels and regularization on graphs [C]//Conference on Learning Theory and 7th Kernel Workshop, 2003: 144 - 158.
  • 8Joachims T. Transductive learning via spectral graph partitioning[C]//Proc, of 20th International Conference on Machine Learning, 2003.
  • 9Belkin M, Niyogi P. Semi-supervised learning on Riemannian manifolds[J]. Machine Learning Journal, 2004,56 : 209 - 239.
  • 10Fowlkes C, Belongie S, Chung F, et al. Spectral grouping using the Nystrom Method[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2004, 26(2) : 214 - 225.

二级参考文献47

  • 1张振跃,查宏远.线性低秩逼近与非线性降维[J].中国科学(A辑),2005,35(3):273-285. 被引量:8
  • 2刘浩,郭华东.雷达图像纹理信息的提取及在地学分析中的利用─—以甘肃省黄羊镇地区SIR-B图像为例[J].环境遥感,1995,10(2):107-113. 被引量:9
  • 3杨剑,李伏欣,王珏.一种改进的局部切空间排列算法[J].软件学报,2005,16(9):1584-1590. 被引量:36
  • 4肖温格RA.遥感中的图像处理和分类技术[M].北京:科学出版社,1991..
  • 5边肇祺 张学工 等.模式识别[M].北京:清华大学出版社,2001..
  • 6H. Sebastian Seung, Daniel D. Lee. The manifold ways of perception [J]. Science, 2000, 290(12): 2268-2269
  • 7Andrew Y. Ng, Michael I. Jordan, Yair Weiss. On spectral clustering: Analysis and an algorithm [G]. In: Advances in NIPS 14. Cambridge, MA: MIT Press, 2001. 849-856
  • 8J. Shawe-Taylor, N. Cristianini, J. Kandola. On the concentration of spectral properties [G]. In: Advances in NIPS 14. Cambridge, MA: MIT Press, 2001. 511-517
  • 9F. R. K. Chung. Spectral Graph Theory [M]. Fresno:American Mathematical Society. 1997
  • 10B. Scholkopf, A. Smola, K-R. Muller. Nonlinear component analysis as a kemel eigenvalue problem[J].Neural Computacation, 1998, 10(5): 1299-1319

共引文献85

同被引文献27

  • 1Pun C M, Lee M C. Log-polar wavelet energy signatures for ro- tation and scale invariant texture classification[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2003, 25 (5) : 590 - 603.
  • 2Kaarna A. Integer PCA and wavelet transforms for multispectral image compression[C]//Proc, of the International Geoscience and Remote Sensing Symposium, 2001:1853 - 1855.
  • 3Jutten C, Herault J. Independent component analysis versus PCA[C]//Proc. of the European Signal Processing Confer- ence, 1988: 643-646.
  • 4Xian G M. An identification method of malignant and benign liv- er tumors from ultrasonograpby based on GLCM texture features and fuzzy SVM[J]. Expert Systems with Applications, 2010, 10(37) : 6737 - 6741.
  • 5Honeycutt C E, Plomick R. Image analysis techniques and gray-level co-occurrence matrices(GLCM) for calculating bioturbation indices and characterizing biogenic sedimentary structures [J]. Computers and Geosciences, 2008, 34(11) : 1461 - 1472.
  • 6Haralick R M, Shanmugam K, Dinstein I. Textural features for image classification[J]. IEEE Trans. on Systems, Man and Cybernetics, 1973, 3(6) : 610 - 621.
  • 7Soh L K. Texture analysis of SAR sea ice imagery using gray level co-occurrence matrices[J]. IEEE Trans. on Geoscience and Remote Sensing, 1999, 37(2) : 780 - 795.
  • 8Jobanputra R, Clausi D A. Preserving boundaries for image texture segmentation using gray level co-occurring probabilities[J]. Pattern Recognition, 2006, 39(2) : 234 - 245.
  • 9Clausi D A. An analysis of co-occurrence statistics as a function of gray level quantization[J]. Canadian Journal of Remote Sensing, 2002, 28(1): 45- 62.
  • 10Fuan T, Chang C K, Rau J Y, et al. 3D computation of gray level co occurrence in hyperspectral image cubes[J]. Energy Minimization Methods in Computer Vision and Pattern Recog nition, 2007(4679) : 429 - 440.

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部