期刊文献+

基于面向任务模型的陆基卫星测控资源克隆选择优化调度 被引量:4

Clonal Selection Land-Based Satellite Tracking Telemetry and Command(TT&C) Resources Scheduling Based on the Mission Oriented Model
在线阅读 下载PDF
导出
摘要 建立了面向任务的陆基卫星测控资源优化调度数学模型,与已有数学模型不同的是,该模型约束同一测控请求同一时刻只被一个可见陆基测控设备测控,为调度算法调度陆基测控设备完成更多的测控任务提供可能.基于此模型提出了基于面向任务模型的陆基卫星测控资源克隆选择优化调度算法(Clonal Selectionland-based Sat-ellite TT&C Resources Scheduling Algorithmbased on the mission oriented model,CS_STT&CRSA),并从理论上证明了算法的收敛性.算法中采用能表示各测控请求时间先后及其与陆基测控设备关系的矩阵编码方式表示种群中的抗体;并针对该编码方式设计了相应的强约束满足算子,保证操作后的抗体满足强约束条件.在5颗同步卫星和30、40、50颗近地卫星请求测控的情况下,分别仿真了10组不同任务.对比实验表明,新建的数学模型可使调度算法更好地利用陆基测控设备;CS_STT&CRSA有更强的搜索能力和约束解决能力,能调度测控资源完成更多的测控任务,它的性能也更加稳定. This paper proposes a novel model, the mission oriented model, for the problem of land-based satellite tracking telemetry and command (TT&C) resources scheduling. Compared to other models, the mission oriented model constrains a satellite to be tracked and commanded by only a ground station which can observe the satellite. Therefore, the proposed model makes it possible that scheduling algorithms schedule TT&C resources to complete more missions. Then it proposes the clonal selection land-based satellite TT&C resources scheduling algorithm (CS_STT&CRSA) based on the mission oriented model and proves its global convergence in theory. The algorithm adopts a matrix coding scheme, which depends on the start times of tracked and commanded orbits and the relationships between satellites and ground stations. The severe-constraint satisfaction operator which guarantees the individual satisfies severe constraints is proposed. When there are 5 geostationary satellites and 30, 40 or 50 low earth orbit and medium earth orbit (LEO&MEO) satellites, 10 different groups of tasks are generated respectively. Experimental results illustrate that the mission oriented model enables scheduling algorithms to make better use of TT&C resources and complete more missions and CS_TT&CRSA has more powerful ability of searching and solving constraints and is more stable.
出处 《计算机学报》 EI CSCD 北大核心 2009年第8期1525-1535,共11页 Chinese Journal of Computers
基金 国家自然科学基金(60703108 60803098) 国家"八六三"高技术研究发展计划项目基金(2006AA01Z107 2009AA12Z210) 国家"九七三"重点基础研究发展规划项目基金(2006CB705700) 国家教育部博士点基金(20070701022) 教育部长江学者和创新团队支持计划(IRT0645)资助~~
关键词 矩阵编码 卫星测控资源 面向任务模型 克隆选择 调度算法 matrix coding scheme satellite tracking telemetry and command (TT&C) resources mission oriented model clonal selection scheduling algorithm
  • 相关文献

参考文献4

二级参考文献16

  • 1[9]陆德源,等.现代免疫学.上海:上海科技教育出版社,1998
  • 2[10]Muhlenbein H, et al. Predictive models for the breeder genetic algorithm. Evolutionary Computation, 1993, 1 (1): 25
  • 3[11]Leung Y W, et al. An orthogonal genetic algorithm with quantization for global numerical optimization. IEEE Transactions on Evolutionary Computation, 2001, 5(1): 41
  • 4[1]Dasgupta D, et al. Artificial immune systems in industrial applications. In: IPMM′99. Proceedings of the Second International Conference on Intelligent Processing and Manufacturing of Materials.IEEE Press, 1999. 257~267
  • 5[3]Cooper K D, et al. Procedure cloning. In: Proceedings of the 1992International Conference on Computer Languages. IEEE Press,1992. 96~ 105
  • 6[4]BalazinskA M, et al. Advanced clone-analysis to support object-oriented system refactoring. In: Proceedings: Seventh Working Conference on Reverse Engineering, IEEE Press, 2000. 98
  • 7[5]Esmaili N, et al. Behavioural cloning in control of a dynamic system. In: IEEE International Conference on Systems, Man and Cybernetics Intelligent Systems for the 21st Century. 1995, 3:2904
  • 8[6]Hybinette M, et al. Cloning: A novel method for interactive parallel simulation. In: Proceedings of the 1997 Winter Simulation Conference. IEEE Press, 1997. 444
  • 9[7]Castro L N De, et al. Learning and Optimization using the clonal selection principle. IEEE Trans Evolutionary Computation, Special Issue on Artifical Immune Systems, 2002, 6(3): 239
  • 10[8]Kim J, et al. Towards an artificial immune system for network intrusion detection: An investigation of clonal selection with a negative selection operator. In: Proceedings of the 2001 Congress on Evolutionary Computation. IEEE Press, 2001. 1244~1252

共引文献34

同被引文献90

引证文献4

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部