期刊文献+

基于贝叶斯神经网络先验模型的图像去噪研究 被引量:7

Image Denoising Based Bayesian Neural Network Prior Statistical Modeling
在线阅读 下载PDF
导出
摘要 基于小波系数先验模型的图像处理方法是现代图像处理技术的重要理论框架之一。针对传统的高斯型或拉普拉斯型先验模型的统计描述精度缺陷,本文提出利用贝叶斯(Bayesian)神经网络模型对图像小波系数的统计特性进行精确建模,结合现代粒子(或Montel Carlo:MC)采样技术——Gibbs采样进行模型参数的估计,并重点考察了各尺度下的正交小波系数先验信息的建模过程,最后利用先验模型图像处理框架,实现图像的噪声抑制。仿真模拟结果表明:一方面,基于贝叶斯神经网络的小波先验模型建模准确,较好地描述了各尺度小波系数的先验信息;另一方面,从图像去噪性能来看,基于建议先验模型的图像质量在客观指标和主观视觉上都有显著的提高。 Image processing based wavelet coefficients prior statistical models plays one of great improtant roles in modern image processing techniques. Owing to the defaults of fitting of Gaussian or Laplace functions, a Bayesian model of neural network(BMNN) to study the statistical dependency of wavelet coefficients is firstly presented. Secondly, its parameters are estimated by modern particle samplers (Monte Carlo) methods--Gibbs algorithm according to the characteristics of the suggested BMNN model. Then the relation- ship of wavelet coefficients is discussed in detail. Finally, a practical application of denoising image by using the BMNN model is demonstrated and the result shows that, on one hand the suggested method can express wavelet coefficients dependency efficiently, on the other, high quality visual effects and peak signal- to-noise ratio (PSNR) are achieved.
作者 龙兴明
出处 《重庆师范大学学报(自然科学版)》 CAS 2009年第3期65-68,共4页 Journal of Chongqing Normal University:Natural Science
基金 重庆市教委科学技术项目(No.KJ090829) 重庆师范大学青年基金项目(No.08XLS13)
关键词 图像去噪 小波先验模型 贝叶斯神经网络 粒子采样 image denoising wavelet coefficients prior models BNN particle samplers
  • 相关文献

参考文献10

  • 1龙兴明,郭世刚.三维测量中基于脊波变换的图像预处理及拐点检测[J].重庆师范大学学报(自然科学版),2007,24(2):46-49. 被引量:4
  • 2Mallat S. A theory for muhiresolution signal decomposition: the wavelet representation [ J ]. IEEE Trans Pattern Anal Machine Intell, 1989,11 ( 7 ) :674-693.
  • 3Moulin P, Liu J. Analysis of muhiresolution image denoising schemes using generalized gaussian and complexity priors [ J ]. IEEE Trans Information Theory, 1999:45 (3):909- 919.
  • 4De Canditiis D, Vidakovic B. Wavelet Bayesian block shrinkage via mixtures of normal-Inverse gamma priors[ J]. Journal of Computational and Graphical Statistics,2004,13 : 383-398.
  • 5Boubchir L, Fadili J M. Bayesian denoising based on the MAP estimation in wavelet-domain using bessel K form prior[ J ]. IEEE ,2005 : 1-116.
  • 6Crouse M S, Nowak R D. Wavelet-based signal processing using hidden Markov models [ J ]. IEEE Trans Signal Process, 1998,46 (4) : 886-902.
  • 7刘亮亮,敖军,高世泽.基于灰色马尔可夫链模型的中国能源消费预测研究[J].重庆师范大学学报(自然科学版),2008,25(4):47-49. 被引量:6
  • 8Sendur L, Selesnick I W. Bivariate shrinkage functions for wavelet-based denoising exploiting interscale dependency [ J ]. IEEE Trans Signall Process, 2002,50 ( 11 ) : 2744- 2756.
  • 9Andrieu C, Freitas N D, Doucet A, et al. Robust full Bayesian learning for neural networks [ C ]. Drft of CUED/F-IN- FENG/TR, 1999.
  • 10Spall J C. Estimation via Markov chain monte carlo [ J ]. IEEE Control Systems Magazine,2003:34-45.

二级参考文献17

共引文献8

同被引文献89

引证文献7

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部