摘要
根据常系数线性微分方程的求解原理,通过一个适当变换,研究了一类变系数线性微分方程及其解的问题,从而可以得到这类方程在特征根都是互异单根时的解法和通解,并对三阶方程的各种情况进行了较为详尽的讨论.
A kind of linear differential equations with variable coefficients and the solutions are studied according to the method of solving the linear differential equations with ordinary coefficients, through a suitable transformation. And we obtained the general solutions of this kind differential equations when all the characteristic roots of the characteristic equation are simple, in the same time, we study all the cases of the third differential equations detailedly.
出处
《大学数学》
2009年第3期123-126,共4页
College Mathematics
基金
山东理工大学科研基金(4040-306006)
学校博士启动基金(4041-405021)
关键词
齐次线性微分方程
通解
变换
特征方程
linear differential equations
general solutions
transformation
the characteristic equation