期刊文献+

一种基于网格的引力聚类算法 被引量:1

A Gravitational Clustering Algorithm Based on Grid
在线阅读 下载PDF
导出
摘要 将万有引力和牛顿第二运动定律的思想引入到聚类分析中,提出了一种基于网格的引力聚类算法GCABG。该算法可以自动决定目标数据集中的簇的个数,并且能发现任意形状的簇且可以过滤"噪声"数据。实验结果表明GCABG可以产生高质量的聚类结果。 This paper introduces gravitation and Newton second law of motion into the process of clustering, and proposes an'algorithm GCABG (Gravitational Clustering Algorithm Based on Grid). This algorithm can decide automatically the number of clusters in the targ.et data set, and find any clusters with arbitrary forms and filter the noisy data. The experimental results show that GCABG algorithm creates high quality greatly.
出处 《微计算机信息》 2009年第18期270-271,237,共3页 Control & Automation
关键词 聚类 聚类算法 网格聚类 引力 clustering clustering algorithm grid clustering gravitation
  • 相关文献

参考文献7

  • 1Jiawei Han,Micheline Kamber.数据挖掘:概念与技术(第2版)[M].范明,孟小峰,译.北京:机械工业出版社,2007.
  • 2汤效琴,戴汝源.数据挖掘中聚类分析的技术方法[J].微计算机信息,2003,19(1):3-4. 被引量:87
  • 3陈良维.数据挖掘中聚类算法研究[J].微计算机信息,2006(07X):209-211. 被引量:32
  • 4邱保志,张西芝.基于网格的参数自动化聚类算法[J].郑州大学学报(工学版),2006,27(2):91-93. 被引量:14
  • 5Alfred V.Aho,John E.Hopcroft,Jeffrey D.Ullman. The Design and Analysis of Computer Algorithms[M]. Beijing:China Machine Press. 2OO6.
  • 6Jonatan Gomez, Dipankar Dasgupta, Olfa Nasraoui. A New Gravitational Clustering Algorithm [C]. Proceedings of the Third SIAM International Conference on Data Mining . USA:Society for Industrial & Applied,2003, 83-94.
  • 7Chih-Ming Hsu ,Ming-Syan Chen.Subspace clustering of high dimension Spatial data with noises [C]. Heidelberg. Germany : Springer, 2004.31-40.

二级参考文献14

  • 1荆丰伟,刘冀伟,王淑盛.改进的K-均值算法在岩相识别中的应用[J].微计算机信息,2004,20(7):41-42. 被引量:5
  • 2韩家炜 Michelin K.数据挖掘:概念与技术[M].北京:机械工业出版社,2001..
  • 3范明,孟小蜂译.数据挖掘:概念与技术--聚类分析[M].北京:机械工业出版社,2001.223-258.
  • 4ESTER M, KRIEGEL H P, SANDER J, et al. A density- based algorithm for discovering clusters in large spatial databases with noise [ A ]. Proceeding of 2nd int Conf On Knowledge Discovery and Data Mining[ C ], Portland : AAAI Press, 1996. 226 - 231.
  • 5KARYPIS G, HAN E H, KUMAR V. Chameleon: A hierarchical clustering algorithm using dynamic modeling[J]. IEEE Computer,1999,32(8) :68 - 75.
  • 6GUHA S, RASTOGI R,SHIM K. CURE: An Efficient Clustering Algorithm for Large Databases [ C ]. New York :ACM Press, 1998.73 - 84.
  • 7ERTOZ L, STEINBACH M, KUMAR V. Finding Clusters of Different Sizes, Shapes, and Densities in Noisy, High Dimensional Data [ C ]. Canada: SIAM Press, 2003,2003.1 - 12.
  • 8HSU C M, CHEN M S. Subspace Clustering of High Dimensional Spatial Data with Noises [ C ]. Germany:Springer, 2004.31- 40.
  • 9A. K. J ain , R. C. Dubes. Algorithm for Clustering Data[C].Prentice Hall, 19881
  • 10Kanungo T, Mount DM, Netanyahu NS. An efficient k-menas clustering algorithm: analysis and implementation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002,24(7):881-892.

共引文献130

同被引文献2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部