期刊文献+

一种基于密度的引力聚类算法 被引量:1

A Gravitational Clustering Algorithm Based on Density
在线阅读 下载PDF
导出
摘要 针对传统基于距离的聚类算法所存在的缺点,将万有引力和牛顿第二运动定律思想引入到聚类过程中,提出了一种改进的基于密度的引力聚类算法GCABD.该算法可以自动决定目标数据集中的簇的个数,并且能发现任意形状的簇且可以过滤"噪声"数据.实验结果表明,所提出的GCABD算法的聚类效果和精度均比典型的K-means算法好,提高了聚类质量. Directing against the drawbacks of traditional algorithm based on distance,the paper introduces gravitation and Newton second law of motion into the process of clustering, and proposes an improved algorithm GCABD (Gravitational Clustering Algorithm Based on Density). This algorithm can decide automatically the number of clusters in the target data set, and find any clusters with arbitrary forms and filter the noisy data. The experimental results show that GCABD algorithm is superior than typical K-means algorithm in clustering effect and precision, enhances the clustering quality greatly.
出处 《河南科学》 2008年第11期1400-1404,共5页 Henan Science
关键词 数据挖掘 聚类分析 聚类算法 引力 data mining clustering analysis clustering algorithm gravitation
  • 相关文献

参考文献7

  • 1Han Jiawei,Kamber M.数据挖掘:概念与技术[M].2版.范明,孟小峰,译.北京:机械工业出版社,2007:251-252.
  • 2Wright W E. Gravitational clustering[J]. Pattern Recognition, 1977,9 (3) : 151-166.
  • 3Jonatan Gomez, Dipankar Dasgupta, Olfa Nasraoui. A new gravitational clustering algorithmiC]I/Proceedings of the Third SIAM International Conference on Data Mining. USA:Society for Industrial & Applied Mathematics, 2003:83-94.
  • 4蒋盛益,李庆华.一种基于引力的聚类方法[J].计算机应用,2005,25(2):286-288. 被引量:9
  • 5Alfred V Aho,John E Hopcroft,Jeffrey D Ullman. The design and analysis of computer algorithms [M]. Beijing:China Machine Press, 2006.
  • 6borah B,Bhattacharyya D K. An improved sampling-based DBSCAN for large spatial database[C]//ICISIP, New York:IEEE Press, 2004: 92-96.
  • 7George Kapis, Eui-Hong (Sam) Han, Vipin Kunmar. CHAMELEON: A hierarchical clustering algorithm using dynamic modeling [J]. IEEE computer, 1999,32 (8) : 68-75.

二级参考文献8

  • 1GUHA S, RASTOGI R, SHIM K. ROCK: A robust clustering algorithm for categorical attributes[ A]. In proceedings of the 15th ICDE[C], 1999.512-521.
  • 2GANTI V, GEHRKE J, RAMAKRISHNAN R. Cactus- clustering categorical data using summaries[ A]. In Proc 1999 Int Conf Knowledge Discovery and Data Mining[ C], 1999.73 -83.
  • 3GUHA S , MEYERSON A , MISHRA N , et al . Clustering data streams: Theory and practice[ J]. Knowledge and Data Engineering,IEEE Transactions on, 2003, 15(3): 515 -528.
  • 4PORTNOY L, ESKIN L, STOLFO S. Intrusion Detection with Unla-beled Data using Clustering[ A]. In Proceedings of ACM CSS Workshop on Data Mining Applied to Security (DMSA-2001) [ C], Philadelphia, PA, 2001.
  • 5ESKIN E, ARNOLD A, PRERAU M, et al. A geometric framework for unsupervised anomaly detection: Detecting intrusions in unla-beled data[ Z]. In Data Mining for Security Applications, 2002.
  • 6SHENG YJ , YU MX . An Efficient Clustering Algorithm [ A ] . In Proc of 2004 International Conference on Machine Learning and Cybernetics[ C], 2004.8.
  • 7MERZ C J, MERPHY P. UCI repository of machine learning databases[ EB/OL]. http://www. ics. uci. edu/ relearn/ MLRRepository. html, 2000.
  • 8何增有,徐晓飞,邓胜春.Squeezer:An Efficient Algorithm for Clustering Categorical Data[J].Journal of Computer Science & Technology,2002,17(5):611-624. 被引量:32

共引文献9

同被引文献6

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部