期刊文献+

基于粒子群优化的加权伏罗诺伊图变电站规划 被引量:36

Substation Location Planning of the Weighted Voronoi Diagram Based on Particle Swarm Optimization Algorithm
原文传递
导出
摘要 针对变电站规划问题,提出一种基于粒子群优化的加权伏罗诺伊图(weighted Voronoi diagram,WVD)变电站规划方法,在变电站数量和容量组合确定的情况下,对变电站的位置和供电范围进行优化。根据变电站及负荷分布的特点,给出全新的权重计算方法,其权重可自适应调整,从而形成基于加权伏罗诺伊图的变电站规划方法。该方法在保证算法收敛的同时,使变电站的位置及供电范围更合理。利用粒子群优化算法的全局搜索特点,实现了基于粒子群优化的加权伏罗诺伊图(particle swarm optimization-weighted voronoi diagram,PSO-WVD)变电站选址及供电范围规划。算例结果表明所提方法无论在变电站站址的确定方面,还是在变电站供电范围的划分方面都比单一方法可靠、合理。 This paper presented a novel method for substation location planning of the weighted Voronoi diagram (WVD) based on particle swarm optimization (PSO) algorithm, which could optimize the location and power supply area of substations while the number and capacity of the substations were predefmed. A new weighting coefficient expression was proposed based on the characteristic of the substation and load distribution. By introducing the self-adaptation of the weighting coefficient, the substation location planning method was presented based on the weighted Voronoi diagram, which could get more reasonable location and power supply area of the substations with keeping the convergence. Combining the global searching ability of the PSO, a particle swarm optimization-weighted voronoi diagram (PSO-WVD) substation location planning method was proposed to optimize the location and power supply area of the substations simultaneously. Test results indicate that the method is more reliable and reasonable than each method.
出处 《中国电机工程学报》 EI CSCD 北大核心 2009年第16期35-41,共7页 Proceedings of the CSEE
关键词 变电站规划 自适应调整 加权伏罗诺伊图 粒子群优化 变电站站址 substation planning self-adaptation weighted Voronoi diagram particle swarm optimization substationlocation
  • 相关文献

参考文献20

  • 1Masud E. An interactive procedure for sizing and timing distribution substations using optimal techniques[J]. IEEE Transactions on Power Apparatus and Systems, 1974, 93(5): 1281-1286.
  • 2Crawford D M, Holt S B. A mathematical optimization technique for locating and sizing distribution substations, and deriving their optimal service areas[J]. IEEE Transactions on Power Apparatus and Systems, 1975, 94(2): 230-235.
  • 3Thompson G L, Wall D L. A branch and bound model for choosing optimal substation locations[J]. 1EEE Transactions on Power Apparatus andSystems, 1981, 100(5): 2683-2688.
  • 4LO K L, Nashid I, Interactive expert system for optimal design of electricity distribution[J]. IEE Proceedings-Generation, Transmission and Distribution, 1996, 143(2): 151-156.
  • 5Dai Hongwei, Yu Yixin, Huang Chunhua, et al. Optimal planning of distribution substation location and sizes-model and algorithm [J]. Electrical PowerandEnergySystems, 1996, 18(6): 353-357.
  • 6张崇见,余贻鑫,严雪飞.中压配电变压器优化规划[J].电力系统自动化,1999,23(1):27-30. 被引量:26
  • 7陈根军,李继洸,王磊,唐国庆.基于Tabu搜索的配电网络规划[J].电力系统自动化,2001,25(7):40-44. 被引量:62
  • 8Bounchard D E, Salama M M A, Chikhani A Y. Optimal feeder routing and optimal substation sizing and placement using guided evolutionary simulated annealing[C]. 1995 Canadian Conference on Electrical and Computer Engineering, Montreal, Canada, 1995.
  • 9Haghifam M R, Shahabi M. Optimal location and sizing of HV/MV substation in uncertainty load environment using genetic algorithm [J]. Electric PowerSystemsResearch, 2002, 63(1): 37-50.
  • 10Miguez E, Diaz-Dorado E, Cidras J. An application of an evolution strategy in power distribution system planning[C]. IEEE World Congress on Computational Intelligence, Anchorage, USA, 1998.

二级参考文献98

共引文献551

同被引文献395

引证文献36

二级引证文献442

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部