期刊文献+

基于约束强度的演化算法 被引量:1

Evolutionary algorithm for constrained single-objective optimization
在线阅读 下载PDF
导出
摘要 为了克服惩罚函数法存在的罚参数难以选择和控制的主要缺陷,利用个体违反约束条件的程度函数,定义了约束强度指标,并设计了一种新的具有较强全局搜索能力的多父体杂交算子,从而提出一种基于约束强度的有效的演化算法。通过数值验证比较其性能优于现有的一些约束单目标优化演化算法。 In order to overcome the major shortcomings of penalty function method that is difficult in choosing the penalty parameters and control, the degree of constraint of individual violation is used completly, the binding strength indicators are defined and a new strong global search ability of the father of many body crossover operator is designed, which presents a constraint based on the strength of effective evolutionary algorithm, through the validation to compare their performance is better than some of the existing constrained single-objective optimization evolutionary algorithms.
作者 李红梅
出处 《计算机工程与设计》 CSCD 北大核心 2009年第7期1719-1721,共3页 Computer Engineering and Design
关键词 演化算法 约束单目标优化 约束强度 多父体杂交 evolutionary algorithms constrained single-objective optimization constraints strength multi-parent crossover
  • 相关文献

参考文献3

二级参考文献60

  • 1Michalewicz Z, Schoenauer M. Evolutionary algorithms for constrained parameter optimization problems. Evolutionary Computation, 1996,4(1):1~32.
  • 2Michalewicz Z. Genetic algorithms, Numerical optimization and constraints. In: Esheiman LJ, ed. Proceedings of the 6th International Conference on Genetic Algorithms. San Mateo: Morgan Kanfmann Publishers, 1995 151~158.
  • 3Deb K. An efficient constraint handling method for genetic algorithms. Computer Methods in Applied Mechanics and Engineering,2000,186(2--4):311 ~338.
  • 4Runarsson TP, Yao X. Stochastic ranking for constrained evolutionary optimization. IEEE Transaclons on Evolutionary Computation, 2000,4(3):284-294.
  • 5Zitzler E, Thiele L. Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach. IEEE Transactions on Evolutionary Computation, 1999,3(4):257~271.
  • 6Beyer H-G, Deb K. On self-adaptive features in real-parameter evolutionary algorithms. IEEE Transactions on Evolutionary Computation, 2001,5(3):250--270.
  • 7Ono I, Kita H, Kobayashi S. A robust real-coded genetic algorithm using unimodal normal distribution crossover augmented by uniform crossover: effects of self adaptation of crossover probabilities. In: Banzhaf W, Daida J, Eiben E, eds. GECCO'99:Proceedings of the Genetic and Evolutionary Computation Conference. San Mateo: Morgan Kaufmann Publishers, 1999. 496~503.
  • 8Tsutsui S, Yamamura M, Higuchi T. Multi-Parent recombination with simplex crossover in real coded genetic algorithms. In:Banzhaf W, Daida J, Eiben E, eds. GECCO'99: Proceedings of the Genetic and Evolutionary Computation Conference. San Mateo:Morgan Kaufmann Publishers, 1999. 657---664.
  • 9Kita H. A comparison study of self-adaptation in evolution strategies and real-coded genetic algorithms. Evolutionary Computation,2001,9(2):223~241.
  • 10Deb K, Joshi D, Anand A. Real-Coded evolutionary algorithms with parent-centric recombination. Technical Report, KanGALReport No.2001003, Kanpur: Indian Institute of Technology, 2001.

共引文献133

同被引文献6

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部