期刊文献+

一种求解多维背包问题的小世界算法 被引量:9

A Small World Algorithm for Multi-Dimensional Knapsack Problems
在线阅读 下载PDF
导出
摘要 针对遗传算法求解复杂组合优化问题时出现早熟收敛和种群多样性丧失等问题,提出了一种解决多维背包问题的二进制编码小世界算法(BSWA).BSWA算法依据社会学中的小世界现象搜索机理,采用类似遗传变异操作的局部搜索,而非遗传算法中的交叉操作.针对多维背包问题的多约束性,BSWA算法还按照价值资源比大小对不可行解进行贪婪修正,以保证求解的正确性.与遗传算法相比,BSWA可以在一定程度上克服早熟收敛,在保持种群多样性和求解精度方面均体现出较大的优势,具有解决复杂组合优化问题的潜力.对55个标准的多约束0-1背包问题进行了50次随机实验,结果表明,BSWA算法对于其中72.73%的问题可以次次获得最优解,对于其他不能次次求解到最优解的问题,也可以获得非常接近全局最优解的满意解. In order to overcome the shortcomings of genetic algorithms (GA), an optimization algorithm called the binary-coding small world algorithm (BSWA) is proposed. The GA always loses diversity in the set of the candidate solutions and prematurely converges when it is used to solve complex combinatorial optimization problems. The BSWA is based on the searching mechanisms in social networks, and emphasizes local (as mutation in GA) rather than global search (as crossover in GA) to find solutions for optimization problems. Compared with the GA, the BSWA is capable of preserving diversity and avoiding premature convergence, and converges faster. These properties suggest that the BSWA is a useful method for solving complicated optimization problems. Simulation results show that the best known solutions of 72.73% of the 55 standard 0- 1 knapsack problems can be found by the BSWA in each of the 50 independent runs, and the final solutions found by the BSWA for the other problems are very close to the best known ones.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2009年第2期10-14,共5页 Journal of Xi'an Jiaotong University
基金 国家自然科学基金资助项目(70671083) 教育部新世纪优秀人才支持计划资助项目(NCET-07-0668) 长江学者奖励计划项目 美国Santa Fe Institute国际基金资助项目 斯坦福大学联合资助项目 西安交通大学"985工程"二期重点资助项目(07200701)
关键词 小世界算法 多维背包问题 贪婪修正算子 small world algorithm multidimensional knapsack problem greedy correcting operator
  • 相关文献

参考文献8

  • 1玄光男 程润伟.遗传算法与工程优化[M].北京:清华大学出版社,2004..
  • 2MARTELLO S, PISINGER D, TOTH P. New trends in exact algorithms for the 0-1 knapsack problem[J]. European Journal of Operational Research, 2000, 123 (2) :325-332.
  • 3AKCAY Y, LI Haijun, XU S H. Greedy algorithm for the general multidimensional knapsack problem [J]. Annals of Operations Research, 2007,150(1):17-29.
  • 4CHU P C, BEASLEY J E. A genetic algorithm for the multidimensional knapsack problem [J ]. Journal of Heuristics, 1998, 4(1) :63-86.
  • 5杜海峰,庄健,张进华,王孙安.用于函数优化的小世界优化算法[J].西安交通大学学报,2005,39(9):1011-1015. 被引量:25
  • 6MICHALEWICZ Z. Genetic algorithms+data structures=evolution programs[M]. 2nd e& Berlin, Grermany: Spring-Verlag, 1994.
  • 7BEASLEY J E. OR-library: distribution test problems by electronic mail [J]. Journal of Operational Research Society, 1990, 41(11): 1069-1072.
  • 8KHURI S, BACK T, HEITKOTTER J. The zero/ one multiple knapsack problem and genetic algorithms [C]//Proceedings of the 1994 ACM Symposium on Applied Computing. New York, USA: ACM Press, 1994: 88-193.

二级参考文献7

  • 1Andrew C, Carlos F, Hartmut P, et al. Genetic algorithm toolbox [EB/OL]. http://www.shef.ac.uk/cgi-bin/cgiwrap/gaipp/gatbx-download, 2003-10-05.
  • 2Kleinberg J. The small-world phenomenon and decentralized search [J]. SIAM News, 2004, 37(3):1-2.
  • 3Watts D J, Strogatz S H. Collective dynamics of small-world networks [J]. Nature, 1998, 393(4):440-442.
  • 4Albert R, Barabasi A L. Statistical mechanics of complex networks [J]. Rev Mod Phys, 2002, 74(1):47-97.
  • 5Liljeros F, Falling C R, Amaral L A N, et al. The web of human sexual contacts [J]. Nature, 2001, 411(6 840) : 907-908.
  • 6Jeong H, Tombor B, Albert R, et al. The large-scale organization of metabolic networks [J]. Nature, 2001,407(6 804):651-654.
  • 7Kleinberg J. The small-world phenomenon: an algorithmic perspective [EB/OL]. http://www.cs.cornell.edu/home/kleinber/swn.d/swn.html,2004-11-20.

共引文献419

同被引文献96

引证文献9

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部