期刊文献+

小世界邻域优化的局部线性嵌入算法 被引量:1

Small World Neighborhood Optimized Local Linear Embedding Algorithm
在线阅读 下载PDF
导出
摘要 通过分析稀疏数据或噪声数据,导出局部线性嵌入(LLE)算法出现失效的原因,由此提出了一种基于小世界邻域优化的局部线性嵌入(SLLE)算法.将复杂网络算法引入到流形学习中,利用小世界算法对LLE算法进行数据优化,并以最短路径和局部集群系数作为局部优化参数,解决了数据点不规则时以欧氏空间作为邻域判别标准在构建局部超平面造成嵌入结果扭曲的难题.通过3组标准测试数据集合比较了SLLE、LLE算法,结果表明SLLE算法的计算效果、鲁棒性、非理想数据的降维结果均优于LLE算法,且计算正确率至少提高10%. By analyzing the invalidity reason of the local linear embedding (LLE) algorithm in ease of the sparse data or the high noise data, small world neighborhood optimization LLE algorithm (SLLE) is proposed based on the complex networks theory. The data in LLE are optimized using the small world algorithm, and the shortest path and the local neighbor set clustering coefficients are used as the local parameters. As a result, the problem of the embedding distortion using only local linear patch of the manifold to define neighborhood in Euclidean space is effectively solved. Three groups of standard data sets are selected to test and to compare the efficiency and robustness of SLLE arid LLE. The experimental results show that the calculation results, robustness and dimension reduction of SLLE are all better than those of LLE, and accuracy rate of SLLE is;at least 10 percent higher than that of LLE.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2008年第12期1486-1489,共4页 Journal of Xi'an Jiaotong University
基金 国家自然科学基金青年科学基金资助项目(507050723)
关键词 局部线性嵌入 降维 小世界邻域 local linear embedding dimension reduction small world neighborhood
  • 相关文献

参考文献10

  • 1HASTIE T, TIBSHIRANI R, FREEDMAN J. The Element of statistical learning: data mining, inference, and prediction[M]. Berlin, Germany: Springer, 2001.
  • 2ROWELS S T, SAUL L K. Nonlinear dimensionality reduction by local linear embedding[J]. Science, 2000,290(550):2323-2326.
  • 3TENENBAUM J B, SILVA V, LANGFORD J C. A global geometric framework for nonlinear dimensionality reduction [J]. Science, 2000,290(550) : 2319-2323.
  • 4LAWRENCE K S, SAM T R.Think globally, fit locally: unsupervised learning of low dimensional mani folds [J].Journal of Machine I.earning Researeh, 2003,4,119-155.
  • 5SHA F, SAUL L K. Analysis and extension of spectral methods for nonlinear dimensionality reduction [C]//Proceedings of the 22nd International Conference on Machine Learning. New York, USA: ACM, 2005: 784-791.
  • 6MILGRAM S. The small world problem[J]. Psychol ogy Today, 1967, 1(1) :61-67.
  • 7WATTS D J, STROGATZ S H. Collective dynamics of small-world networks [J]. Nature, 1998, 393 (4) : 440-442.
  • 8杜海峰,庄健,张进华,王孙安.用于函数优化的小世界优化算法[J].西安交通大学学报,2005,39(9):1011-1015. 被引量:25
  • 9李果,高建民,高智勇,姜洪权.基于小世界网络的复杂系统故障传播模型[J].西安交通大学学报,2007,41(3):334-338. 被引量:16
  • 10余根坚,许力,郑宝玉.复杂动态网络模型研究进展[J].福州大学学报(自然科学版),2006,34(5):637-643. 被引量:2

二级参考文献34

  • 1孟仲伟,鲁宗相,宋靖雁.中美电网的小世界拓扑模型比较分析[J].电力系统自动化,2004,28(15):21-24. 被引量:181
  • 2祝庚,陈毅华,侯家利.K步故障扩散算法的设计与实现[J].计算机测量与控制,2005,13(8):784-787. 被引量:9
  • 3Andrew C, Carlos F, Hartmut P, et al. Genetic algorithm toolbox [EB/OL]. http://www.shef.ac.uk/cgi-bin/cgiwrap/gaipp/gatbx-download, 2003-10-05.
  • 4Kleinberg J. The small-world phenomenon and decentralized search [J]. SIAM News, 2004, 37(3):1-2.
  • 5Watts D J, Strogatz S H. Collective dynamics of small-world networks [J]. Nature, 1998, 393(4):440-442.
  • 6Albert R, Barabasi A L. Statistical mechanics of complex networks [J]. Rev Mod Phys, 2002, 74(1):47-97.
  • 7Liljeros F, Falling C R, Amaral L A N, et al. The web of human sexual contacts [J]. Nature, 2001, 411(6 840) : 907-908.
  • 8Jeong H, Tombor B, Albert R, et al. The large-scale organization of metabolic networks [J]. Nature, 2001,407(6 804):651-654.
  • 9Kleinberg J. The small-world phenomenon: an algorithmic perspective [EB/OL]. http://www.cs.cornell.edu/home/kleinber/swn.d/swn.html,2004-11-20.
  • 10Anderson R M, May R M. Infectious diseases of humans[M]. Oxford: Oxford University Press, 1991.

共引文献40

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部