期刊文献+

基于动态权值的粒子群算法的多样性分析 被引量:7

Research on Diversity of Particle Swarm Optimization Algorithm Based on Dynamic Weight
在线阅读 下载PDF
导出
摘要 种群的多样性是保证粒子群优化算法收敛的前提条件,基于此提出了一个概念清晰、运算量小的多样性定义,并从粒子在寻优过程中粒子聚合程度和速度进化程度出发分析粒子群的多样性。在此基础上,提出了一种基于动态权值的改进算法,算法能自适应的调整惯性因子以保持种群多样性,有效地避免了早熟收敛。仿真实验表明该算法不仅能加快种群的进化速度,而且还能增强算法的全局收敛性,收敛概率也从15%增加到100%。 Stocks diversity is the precondition for ensuring the convergence of PSO algorithm. The definition of stocks diversity is clear and the operand is small, moreover which was analyzed by particle evolution degree and aggregation degree. A changed algorithm was proposed based on adjusting weight adaptively. The algorithm ensures population diversity and avoids premature convergence effectively. Simulation results indicate that this algorithm not only speeds up the population the evolution speed, but also strengthens the algorithm the overall situation astringency, and convergence of probability also increases from 15% to 100%.
出处 《石油化工高等学校学报》 CAS 2008年第4期91-94,共4页 Journal of Petrochemical Universities
基金 国家自然科学基金项目(60474030) 江苏省教育厅项目(07KJB510001)
关键词 多样性 粒子群算法 动态权值 早熟 Diversity Particle swarm optimization algorithm Dynamic weight Premature
  • 相关文献

参考文献9

  • 1Kennedy J, Eberhart R C. Particle swarm optimization: Proc IEEE international conference on neural networks [C]. USA:IEEE press, 1995, 4. 1942--1948.
  • 2Eberhart R C, Kennedy J. A new optimizer using particle swarm theory: Proc. of the sixth international symposium on micro machine and hunan science[C]. Nagoya, Japan: [s. n. ], 1995.
  • 3Eberhart R C, Shi Y. Particle swarm optimization: development, applications and resource [J]. IEEE int. conf . on evolutionary computation, 2001: 81--86.
  • 4常晓萍,秦建华,Yigong LOU.粒子群算法在化工过程优化中的应用[J].石油化工高等学校学报,2007,20(1):90-93. 被引量:3
  • 5王介生.基于粒子群算法的ANFIS模型参数优化[J].石油化工高等学校学报,2007,20(3):41-44. 被引量:2
  • 6Van den Bergh F. An analysis of particle swarm optimizers [D]. Department of computer science, university of pretoria, south Africa, 2002:81--83
  • 7Van den Bergh F, Engel Brecht A P. Effects of swarm size on cooperative particle swarm optimizers. In proceedings of the genetic and evolutionary computation conference (GECCO)[C].USA :San Francisco, 2001.
  • 8吕振肃,侯志荣.自适应变异的粒子群优化算法[J].电子学报,2004,32(3):416-420. 被引量:455
  • 9Shi Y, Eberhart R C. A modified particle swarm optimizer [C]//IEEE international conference of evolutionary computation, anchorge, Alaska: IEEE press, 1998--05.

二级参考文献17

共引文献457

同被引文献50

引证文献7

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部