期刊文献+

粒子群算法求解连续优化问题的性能分析 被引量:1

The Performance Analysis of Particle Swarm Optimization for Solving Continuous Optimization Problem
在线阅读 下载PDF
导出
摘要 粒子群优化(PSO)算法是一类有效的随机全局优化技术,适用于求解连续优化问题。它利用一个粒子群搜索解空间,通过粒子间的相互作用发现复杂搜索空间中的最优区域。本文介绍了基本的PSO算法,使用3类代表性的标准测试函数对粒子群算法进行了实验分析,并进一步讨论了PSO算法的寻优性能,提出了PSO求解连续优化问题的性能分析策略。 Particle swarm algorithm is a stochastic global optimization technique and it is fit for function optimization. The particle swarm algorithm find optimal regions of complex search spaces through the interaction of individuals in a population of particles. In this paper, classical particle swarm optimization algorithm is introduced. Furthermore results of experiments on three benchmark functions are shown and they demonstrate the efficiency of PSO in different ways.
出处 《微计算机应用》 2008年第10期87-91,共5页 Microcomputer Applications
关键词 粒子群 函数优化 群集智能 particle swarm, function optimization, swarm intelligence
  • 相关文献

参考文献12

  • 1Eberhart, R. and Kennedy, J. A new optimizer using particle swarm theory, Proc. 6 Int. Symposium on Micro Machine and Human Science, 1995, pp. 39 - 43.
  • 2彭喜元,彭宇,戴毓丰.群智能理论及应用[J].电子学报,2003,31(z1):1982-1988. 被引量:80
  • 3J.J. Liang, A. K. Qin, P.N. Suganthan, and S. Baskar: Comprehensive Learning Particle Swarm Optimizer for Global Optimization of Multimodal Functions. IEEE Trans. Evol. Comput. , vol. 10, No. 3, pp. 281 - 295, Jun. 2006.
  • 4高浩,须文波,孙俊.一种优化高维函数的量子—粒子群算法[J].计算机应用,2007,27(12):2885-2887. 被引量:5
  • 5唐贤伦,庄陵,李银国,曹长修.混合粒子群优化算法优化前向神经网络结构和参数[J].计算机应用研究,2007,24(12):91-93. 被引量:15
  • 6Tiago Sousa, Arlindo Silva, Ana Neves. Particle Swarm based Data Mining Algorithms for classification tasks. Parallel Computing. 2004 (30) :767 - 783.
  • 7张兴华,李纬,周刘喜.一种PID参数整定的粒子群优化算法[J].计算机工程与应用,2007,43(33):227-229. 被引量:9
  • 8S. Kannan, S. Mary Raja Slochanal, P. Subbaraj, etal. Application of particle swarm optimization technique and its variants to generation expansion planning problem. Electric Power Systems Research. 2004, (70) :203 - 210.
  • 9王存睿,段晓东,刘向东,周福才.改进的基本粒子群优化算法[J].计算机工程,2004,30(21):35-37. 被引量:43
  • 10A Discrete Particle Swarm Optimization Algorithm for the Generalized Traveling Salesman Problem. Proceedings of the 9th annual conference on Genetic and Evolutionary Computation Conference. 2007, 158 - 165.

二级参考文献87

  • 1苏成利,徐志成,王树青.PSO算法在非线性系统模型参数估计中的应用[J].信息与控制,2005,34(1):123-125. 被引量:19
  • 2夏蔚军,吴智铭.基于混合微粒群优化的多目标柔性Job-shop调度[J].控制与决策,2005,20(2):137-141. 被引量:35
  • 3[1]Kennedy j, Eberhart R. Particle Swarm Optimization[C]. Perth,Australia: Proc. IEEE Int. Conf. on Neural Networks, 1995; 1942-1948
  • 4[2]Reynolds C W. Flocks, Herds and Schools: A Distributed Behavioral Model[J]. Computer Graphic, 1987, 21(4):25-34
  • 5[3]Shi Y, Eberhart R C. Parameter Selection in Particle Swarm Optimization[J]. Evolutionary Programming Ⅶ, Lecture Notes in Computer Science, Springer, 1998
  • 6[4]Shi Y, Eberhart R C. A modified Particle Swarm Optimizer[C]. Anchorage, Alaska: IEEE International Conference on Evolutionary Computation, 1998-05:69-73
  • 7[5]Beekman M, Ratnieks F L W. Long-rang Foraging by the Honey-bee, Apis Mellifera L [J]. Functional Ecologicy, 2000,(14):490-496
  • 8[6]Wilson E O. Sociobiology: The New Synthesis[M]. Cambridge, MA:Belknap Press, 1975
  • 9[11]Shi Y, Eberhart R. Fuzzy adaptive particle swarm optimization [ A ].Proc. Congress on Evolutionary Computation[ C ]. Seonl, Korea. Piscataway, NJ: IEEE Service Center,27 - 30 May 2001.1.101 - 106.
  • 10[12]Jacques Riget,Jakob S Vesterstrom. A diversity-guided particle swarm optimization-the ARPSO [ DB/OL ]. http://citeseer. nj. nec. com/riget02diversityguided. html.

共引文献147

同被引文献8

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部