摘要
考虑二阶两点边值问题-u″(t)=f(u(t)),t∈[0,1],u(0)=u′(1)=0,其中f为R1上的非负连续函数。通过应用一个新的三解定理,得到了边值问题多重正解的存在性。
We discuss the multiplicity of solutions to a kind of second-order two-point boundary value problem:-u″(t)=f(u(t)),t∈[0,1],u(0)=u'(1)=0, where f is a nonnegative continuous function on R'. Some new three-solution theorems are employed to discuss the problem.
出处
《太原科技大学学报》
2008年第4期322-325,共4页
Journal of Taiyuan University of Science and Technology
基金
国家自然科学基金(10771128)
山西省自然科学基金(2006011002)
关键词
不动点指数
全连续算子
三解定理
fixed point index, completely continuous operator, three-solution theorem