期刊文献+

基于蚁群算法的模糊分类系统设计 被引量:4

Design of Ant Colony Algorithm-based Fuzzy Classification System
在线阅读 下载PDF
导出
摘要 提出了一种基于最大-最小蚁群算法的模糊分类系统设计方法。该方法通过两个阶段来实现:特征变量选择和模型参数优化。首先采用蚁群算法对特征变量进行选择,得到一组具有较高分辩性能的特征变量,提高模型的解释性;在模型结构确定后,蚁群算法从训练样本中提取信息对模型的参数进行优化,在保证模型精确性的前提下,构造具有较少变量数目及规则数目的模糊模型,实现了精确性与解释性的折衷。最后将本方法运用到Iris和Wine数据样本分类问题中,并将结果与其它方法进行比较,仿真结果证明了该方法的有效性。 An approach to design fuzzy classification systems based on the Max-Min ant colony algorithm is proposed. The method consists of two phases: a feature selection phase and a model parameter optimization phase. In order to obtain fuzzy models with a good interpretability-accuracy trade-off, the method employs ant colony algorithm to sort out a group of input variables from training patterns with high performance of identification. After the identification of the surface structure, ant colony algorithm is applied to identify the parameters of the Membership Functions used in the rule base, taking into account the information provided by training patterns. Max-Min Ant System (MMAS), a good alternative to existing algorithms, is presented to optimize the fuzzy modeling. The performance of the proposed method both for training and test data is examined by computer simulations on the Iris and Wine data classification problems.
出处 《模糊系统与数学》 CSCD 北大核心 2008年第4期87-98,共12页 Fuzzy Systems and Mathematics
基金 国家自然科学基金资助项目(60674001) 863安全保障课题(2007AA11Z247)
关键词 蚁群算法 模糊分类系统 解释性 Ant Colony Algorithm Fuzzy Classification System Interpretability
  • 相关文献

参考文献22

  • 1Kuncheva I. Fuzzy classifier design (Studies in Fuzziness and Soft Computing)[M]. New York : Heidelberg, 2000.
  • 2Abe S, Thowanms R. A fuzzy classifier with ellipsoidal regions[J].IEEE Trans. Fuzzy Systems, 1997:358-368.
  • 3Simpson P K. Fuzzy min-max neural networks-part 1: classification[J]. IEEE Trans. Neural Networks, 1992:776-786.
  • 4Castellano G, et al. Modeling fuzzy classification systems with compact rule base[A]. 1999 international conference on computional intelligence for modeling, control and automation[C]. Vienna, Austria, 1999.
  • 5Ishibuchi H, Yamamoto T. Effects of three-objective genetic rule selection on the generation ability of fuzzy rulebased systems[A]. Proe. 2nd int. conf. evolutionary multi-criterion optimization[C]. Faro, Porugal, 2003,vol. 4 : 608 -622.
  • 6Abonyi J, Roubos H, Szeifet F. Data-driven generation of compact, accurate and linguistically sound fuzzy classifiers based on a decision tree initialization[J].International Journal of Approximate Reasoning,2003:1-21.
  • 7Chang X, Lilly J H. Evolutionary design of a fuzzy classifier from data[J].IEEE Trans System Man Cybernetic Part B,2004 : 894-906.
  • 8Ludmila I K. How good are fuzzy if-then classifiers[J]. IEEE Transactions on Systems,Man,and Cybernetics-Part B: Cybernetics, 2000,30(4).
  • 9Stutzle T, Hoos H H. Max-Min ant system[Z]. Elsevier Science,1999.
  • 10Casillas J, Cordon O, Fernandez de Viana L, Herrera F. Learning cooperative linguistic fuzzy rules using the bestworst ant systems algorithm[J]. International Journal of Intelligent Systems,2005,20: 433-452.

二级参考文献3

  • 1Hisao Ishibuchi,Ken Nozaki,Naohisa Yamamoto.Distributed representation of fuzzy rules and its application to pattern classification[].Fuzzy Sets and Systems.1992
  • 2Jyh Shing Roger Jang.ANFIS: Adaptive-networkbased fuzzy inference system[].IEEE Transactions on Systems Man and Cybernetics.1993
  • 3Hisao Ishibuchi,Ken Nozaki,Naohisa Yamamoto et al.Selecting fuzzy If -Then rules for classification problems using genetic algorithms[].IEEE Transactions on Fuzzy Systems.1995

共引文献20

同被引文献35

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部