期刊文献+

复杂模糊分类系统的协同进化设计方法 被引量:3

Design of complex fuzzy classification system based on cooperative coevolutionary algorithm
在线阅读 下载PDF
导出
摘要 提出一种基于协同进化算法的复杂模糊分类系统的设计方法.该方法由以下3步组成:1)利用Simba算法进行特征变量选择;2)采用模糊聚类算法辨识初始的模糊模型;3)利用协同进化算法对所获得的初始模糊模型进行结构和参数的优化.协同进化算法由三类种群组成;规则数种群,规则前件种群和隶属函数种群;其适应度函数同时考虑模型的精确性和解释性,采用三类种群合作计算的策略.利用该方法对多个典型问题进行分类,仿真结果验证了方法的有效性. A novel approach to construct complex fuzzy classification system based on cooperative coevolutionary(Co-evolution) algorithm is proposed in this paper. The approach is composed of three phases: 1) feature selection is accomplished by the Simba algorithm; 2) the initial fuzzy system is identified using the fuzzy clustering algorithm; 3) the structure and parameters of the fuzzy system are optimized by the Co-evolution algorithm. The Co-evolution algorithm owns three species including the number of fuzzy rules species, the premise structure species and the parameters species. Considering both precision and interpretability, the fitness function is calculated on the cooperation of individuals from the three species. The proposed approach had been applied to several benchmark problems, the results showed its validity.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2007年第1期32-38,共7页 Control Theory & Applications
基金 国家自然科学资助项目(60474034)
关键词 模糊分类系统 特征变量选择 协同进化算法 解释性 fuzzy classification systems feature selection fuzzy clustering co-evolution algorithm interpretability
  • 相关文献

参考文献16

  • 1SETNES M,BABUSKA R,KAYMAK U,LEMKE H R N.Similarity measures in fuzzy rule base simplification[J].IEEE Trans on Systems,Man and Cybernetics,1998,28(3):376-386.
  • 2邢宗义 ,贾利民 ,张永 ,胡维礼 ,秦勇 .一类基于数据的解释性模糊建模方法的研究[J].自动化学报,2005,31(6):815-824. 被引量:12
  • 3SETNES M,ROUBOS H.GA-fuzzy modeling and classification:complexity and performance[J].IEEE Trans on Fuzzy Systems,2000,8(5):509-522.
  • 4ABONYI J,ROUBOS H,SZEIFERT F.Data-driven generation of compact,accurate,and linguistically sound fuzzy classifiers based on a decision tree initialization[J].Int J of Approximate Reasoning,2003,32(1):1-21.
  • 5WANG Han Li,SAM KWONG.Multi-objective hierarchical genetic algorithm for interpretable fuzzy rule-based knowledge extraction[J].Fuzzy Sets and Systems,2005,149(1):149-186.
  • 6ISHIBUCHI H,NAKASHIMA T,MURATA T.Performance evaluation of fuzzy classifier systems for multidimensional pattern classification problems[J].IEEE Trans on System,Man and CyberneticsPart B,1999,29(5):601-618.
  • 7HO S-Y,CHEN H-M.Design of accurate classifiers with a compact fuzzy-rule base using an evolutionary scatter partition of feature space[J].IEEE Trans on Systems,Man and Cybernetics-Part B,2004,34(2):1031-1044.
  • 8PAIVA R P,DOURADO A.Interpretability and learning in neurofuzzy system[J].Fuzzy Sets and Systems,2004,147(1):17-38.
  • 9HOMAIFAR A,McCORMCK E.Simultaneous design of membership functions and rule sets for fuzzy controller using genetic algorithms[J].IEEE Trans on Fuzzy System,1995,3(2):129-139.
  • 10PAREDIS J.Coevolutionary Computation,Artificial Life 2[M].Cambridge,MA:MIT Press,1995:355-375.

二级参考文献34

  • 1Gomez-Skarmeta A F, Delgado M, Vila M A. About the use of fuzzy clustering techniques for fuzzy model identification. Fuzzy Sets and Systems, 1999, 106(2): 179-188
  • 2Lefteri H T, Robert E U. Fuzzy and Neural Approaches in Engineering. New York: Wiley, 1997
  • 3Jang J S R, Sun C T, Mizutani E. Neuro-Fuzzy and Soft Computing. New Jersey: Prentice Hall, 1996
  • 4Cordon O, Herrera F, Hoffmann F, Magdalena L. Genetic Fuzzy Systems: Evolutionary Tuning and Learning of Fuzzy Rule Bases. Singapore: World Scientific, 2000
  • 5Cordon O, Gomide F, Herrera F, Hoffmann F, Magdalena L. Ten years of genetic fuzzy systems: Current framework and new trends. Fuzzy Sets and Systems, 2004, 141(1): 5-31
  • 6Babuska R, Bersini H, Linkens D A, Nauck D, Tselentis G, Wolkenhauer O. Future Prospects for Fuzzy Systems and Technology. ERUDIT Newsletter, Aachen, Germany, 6(1), 2000. Available:http:∥ www.erudit.de/erudit /newsletters/news61/page5.htm
  • 7Roubos H, Setnes M. Compact and transparent fuzzy models and classifiers through iterative complexity reduction. IEEE Transactions on Fuzzy Systems, 2001, 9(4): 516-524
  • 8Nauck D D. Fuzzy data analysis with NEFCLASS. Approximate Reasoning, 2003, 32:103-130
  • 9Jin Y. Fuzzy modeling of high-dimensional systems complexity reduction and interpretability improvement.Fuzzy Sets and Systems, 2000, 8(2): 212-221
  • 10Casillas J, Cordón O, Herrera F, Magdalena L. Interpretability improvements to find the balance interpretability accuracy in fuzzy modeling: an overview. Chapter of Interpretability Issues in Fuzzy Modeling. Springer,2003, 3-22

共引文献11

同被引文献27

  • 1邢宗义 ,贾利民 ,张永 ,胡维礼 ,秦勇 .一类基于数据的解释性模糊建模方法的研究[J].自动化学报,2005,31(6):815-824. 被引量:12
  • 2邢宗义,张永,侯远龙,贾利民.基于模糊聚类和遗传算法的具备解释性和精确性的模糊分类系统设计[J].电子学报,2006,34(1):83-88. 被引量:8
  • 3张永,吴晓蓓,向峥嵘,胡维礼.基于多目标进化算法的高维模糊分类系统的设计[J].系统仿真学报,2007,19(1):210-215. 被引量:11
  • 4周树德,孙增圻.分布估计算法综述[J].自动化学报,2007,33(2):113-124. 被引量:214
  • 5Pulkkinen P, Koivisto H. Identification of interpretable and accurate fuzzy classifiers and function estimators with hybrid methods [ J ]. Applied Soft Computing, 2007,7(2) :520 -533.
  • 6Eftekhari M, Katebi S D, Karimi M, et al. Eliciting transparent fuzzy model using differential evolution [ J ]. Applied Soft Computing, 2008,8( 1 ) :466 -476.
  • 7Roubos H, Setnes M. Compact and transparent fuzzy models and classifiers through iterative complexity re- duction [J]. IEEE Trans on Fuzzy Systems, 2001,9 (4) : 516 -524.
  • 8Paredis J. Coevolutionary computation, artificial life 2 [M]. MITPress, 1995:355 -375.
  • 9Gilad-Bachrach Ran, Navot Amir, Tishby Naftali. Margin based feature selection--theory and algorithms [ C ]//Proceedings of the 21 st International Conference on Machine Learning. Banff, Canada, 2004:337 - 344.
  • 10Abonyi J, Roubos H, Szeifert F. Data-driven generation of compact, accurate, and linguistically sound fuzzy classifiers based on a decision tree initialization [J]. International Journal of Approximate Reasoning, 2003,32(1) :1 -21.

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部