期刊文献+

一种基于偏好的多目标遗传算法在动态模型参数辨识中的应用 被引量:10

A preference-based non-dominated sorting genetic algorithm for dynamic model parameters identification
在线阅读 下载PDF
导出
摘要 针对多目标优化问题,提出了PNSGA算法(preference-based non-dominated sorting genetic algorithm),是一种NSGAⅡ的改进算法,结合Pareto支配和偏好信息定义了新的优于关系;把偏好信息加入快速非支配排序中,引导搜索方向,更方便决策者选择;并进一步分析了加入偏好对拥挤度机制的影响。实验证明该算法能较好地解决动态模型参数辨识的问题,有利于决策者做出决策。 A preference-based non dominated sorting genetic algorithm (PNSGA) was proposed to solve the multi-objective optimization problems. It is an improved method of NSGA Ⅱ (non-dominated sorting genetic algorithm Ⅱ). A new preference relationship was defined based on Pareto dominance and goal vectors. The goal vectors were designed according to the decision-maker's preference. This algorithm combined the preference relationship with the fast non-dominated sorting, an important technique in NSGA Ⅱ. The advantage of the algorithm over NSGA Ⅱ in terms of crowding mechanism was analyzed. In the experiments, dynamic model parameters identification problem of the methanol-to-hydrocarbons process was changed into minimum optimization problem by fitting the sampling data. The result demonstrated the effectiveness of the algorithm for dynamic model parameters identification, compared with the conventional methods.
出处 《化工学报》 EI CAS CSCD 北大核心 2008年第7期1620-1624,共5页 CIESC Journal
基金 国家自然科学基金重点项目(60736021) 国家高技术研究发展计划项目(2006AA04Z184,2007AA041406) 浙江省科技计划项目(2006C11066,2006C31051)~~
关键词 偏好 PARETO支配 拥挤度机制 参数辨识 preference Pareto dominance crowding mechanism parameters identification
  • 相关文献

参考文献3

二级参考文献38

  • 1江爱朋,邵之江,钱积新.大规模过程系统优化的一种改进简约空间SQP算法[J].浙江大学学报(工学版),2005,39(10):1470-1474. 被引量:8
  • 2Van Veldhuizen DA, Lamont GB. Multi-Objective evolutionary algorithms: Analyzing the State-of-the-Art. IEEE Trans. on Evolutionary Computation, 2000,8(2): 125-147.
  • 3Coello CAC. List of Reference on Evolutionary Multi-objective Optimization. http://www.lania.mx/~ccoello/EMOO/EMOObib.html.
  • 4Fonseca CM, Fleming PJ. An overview of evolutionary algorithms in multi-objective optimization. Evolutionary Computation,1995,3(1):11-16.
  • 5Wolpert DH, Macready WG. No free lunch theorems for optimization. IEEE Trans. on Evolutionary Computation, 1997,1(1):67-82.
  • 6Fonseca CM, Fleming PJ. Genetic algorithms for multi-objective optimization: formulation, discussion and generalization. In:Stephanie Forrest, ed. Proc. of the 5th Int'l Conf. on Genetic Algorithms. University of Illinois at Urbana-Champaign: Morgan Kauffman Publishers, 1993.416-423.
  • 7Zitzler E, Thiele L. Multi-Objective evolutionary algorithms: A comparative case study and the strength pareto approach. IEEE Trans. on Evolutionary Computation, 1999,3(4):257-271.
  • 8Deb K, Agarwal S, Pratap A, Heyarivon T. A fast and elitist multi-objective genetic algorithm: NSGA-Ⅱ. IEEE Trans. Evolutionary Computation, 2002,6(2):182-197.
  • 9Dragan C, Ian CP. Designer's preferences and multi-objective preliminary design processes, In: Ian CP, ed. Proc. of the 4th Int'l Conf. on Adaptive Computing in Design and Manufacture. London: Springer, 2000. 249-260.
  • 10Coello CAC. Handling preferences in evolutionary multi-objective optimization: A survey. In: Coello CAC, ed. Proc. Congress of Evolutionary Computation. New Jersey: IEEE Service Center, 2000. 30-37.

共引文献78

同被引文献95

引证文献10

二级引证文献80

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部