期刊文献+

一种改进的粒子滤波SLAM算法 被引量:3

Modified particle filter SLAM algorithm
在线阅读 下载PDF
导出
摘要 提出一种改进的粒子滤波SLAM(simultaneous localization and map building)同时定位和地图创建实现方法。改进方法让机器人大约行进10步完成基于局部已创建地图下的粒子滤波定位后,再利用激光传感器探测环境并更新创建的地图;同时在利用粒子滤波定位时,使粒子只分布在由航位推算法得出的机器人位姿附近,从而可有效地减少粒子的数量。实验结果表明,与标准的粒子滤波SLAM算法比较,改进算法提高了机器人SLAM过程中定位和地图创建的精度和实时性,并为移动机器人在室外未知环境同时定位和地图创建提供了新方法。 This paper introduced an improved PF-SLAM (particle filtering-SLAM) approach.The improved method first let the robot run about ten steps and finished localizition based on the existing maps,and then used laser rangefinder to observe environments and updates maps.At the same time,in this method,particles were distributed only around the robot.The experiment results indicate that the precision and real-time performance of localization and mapping can be improved.It gives a new method for robot SLAM in outdoor unknown environments.
出处 《计算机应用研究》 CSCD 北大核心 2008年第6期1698-1700,共3页 Application Research of Computers
基金 国家自然科学基金资助项目(60475028)
关键词 局部地图 同时定位和地图创建 粒子滤波算法 贝叶斯规则 栅格地图 local maps SLAM particle filter algorithm Bayesian rule occupied grid maps
  • 相关文献

参考文献15

  • 1SMITH R,SELF M, CHEESEMAN P. A stochastic map for uncertain spatial relationships [ C ]//Proc of the 4th International Symposium on Robotics Research. Cambridge : MIT Press, 1987 : 467-474.
  • 2SMITH R,SELF M,CHEESEMAN P. Estimating uncertain spatial relationships in robotics [ M ]//Autonomous Robot Vehicles. New York: Springer-Verlag , 1990 : 167-193.
  • 3WILLIAMS S B,DISSANAYAKE G,DURRANT-WHYTE H F. Field deployment of the simultaneous localization and mapping algorithm [ C ]// Proc of IFAC World Congress on Automatic Control. Barcelona,Spain: IFAC Press,2002: 861-866.
  • 4FOX D, BURGARD W, DELLAERT F,et al. Monte Carlo localization :efficient position estimation for mobile robots [ C ]//Proc of the 16th National Conference on Artificial Intelligence. 1999: 1322- 1328.
  • 5LENSER S, VELOSO M. Sensor resetting localization for poorly modelled mobile robots [ C]//Proc of IEEE International Conference on Robotics and Automation. San Francisco : IEEE Press, 2000:1225 -1232.
  • 6GORDON N. A hybrid bootstrap filter for target tracking in clutter [J]. IEEE Trans on Aerospace and Electronic Systems, 1997, 33 (1) :353-358.
  • 7JENSFELT P, WIJK O, AUSTIN D, et al. Feature based condensation for mobile robot localization [ C ]//Proc of IEEE International Conference on Robotics and Automation. San Francisco: IEEE Press, 2000, 2531-2537.
  • 8ADAMS M, ZHANG Sen, XfE Li-hua. Particle filter based outdoor robot localization using natural features extended from laser scanners [ C ]//Proc of fEEE International Conference on Robotics and Automation. New Orleans : IEEE Press, 2004 : 1493-1498.
  • 9FOX D,BURGARD W,DELLAERT F,et al. Monte Carlo localization for mobile robots[ C ]//Proc of IEEE International Conference on Robotics and Automation. Detroit: IEEE Press,1999:1322-1328
  • 10MURPHY K. Bayesian map learning in dynamic environments [ C ]//Proc of Advances in Nearal Information Processing System. Marriott: MIT Press,1999 : 1015-1021.

同被引文献26

  • 1陈锻生,刘政凯.肤色检测技术综述[J].计算机学报,2006,29(2):194-207. 被引量:119
  • 2Swaminathan G,Venkoparao V,Bedros S.Multiple appearance models for face tracking in surveillance videos[C]//IEEE Conference on Advanced Video and Signal Based Surveillance.London,Britain:IEEE,2007:383-387.
  • 3Nummiaro K,Koller-Meier E,Gool L V.An adaptive color-based particle filter[J].Image and Vision Computing,2003,21(1):99-110.
  • 4Nummiaro K,Koller-Meier E,Gool L V.A color-based particle filter[C]//First International Workshop on Generative-Model-Based Vision.New York,USA:Elsevier,2002:53-60.
  • 5Pérez P,Vermaak J,Blake A.Data fusion for visual tracking with particles[J].Proceedings of the IEEE,2004,92(3):495-513.
  • 6Carpenter J,Clifford P,Fearnhead P.An improved particle filter for non-linear problems[J].IEE Proceedings on Radar and Sonar Navigation,1999(146):2-7.
  • 7Terrillon J C,Akamatsu S.Comparative performance of different chrominance spaces for color segmentation and detection of human faces in complex scene images[C]//Proceedings of IEEE International Conference on Automatic Face and Gesture Recognition.Gre-noble,France:IEEE,2000:54-61.
  • 8张毓晋.图像工程(中册)图像分析[M].2版.北京:清华大学出版社,2005.
  • 9Ojala T,Pietikinen M,Harwood D.A comparative study of texture measures with classification based on feature distributions[J].Pattern Recognition,1996,29(1):51-59.
  • 10Ojala T,Pietikinen,Menp T.Multiresolution gray-scale and rotation invariant texture classification with local binary pattern[J].IEEE Transactions on Pattern Analysis and Machine,2002,24(7):971-987.

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部