期刊文献+

±800kV特高压直流GIL关键技术研究 被引量:90

Study on Key Technology of ±800 kV UHVDC GIL
在线阅读 下载PDF
导出
摘要 为了提高特高压直流输电线路走廊选择的灵活性,研究可以替代部分架空输电线路的直流气体绝缘金属封闭输电线路(gas insulated metal enclosed transmission line,GIL)具有重要意义。提出了在进行直流GIL绝缘子相关试验时,以带绝缘子的圆柱平板电极替代带绝缘子的同轴圆柱电极的试验方法。结合国外小尺寸电极试验结果,采用麦夸特法拟合得到了考虑表面粗糙度的同轴圆柱电极SF6气体间隙下临界击穿场强估算公式。设计了包含微粒陷阱、微粒驱赶电极和屏蔽环的直流GIL电极结构,并对此进行了电场分布的仿真,结果表明此结构具有抑制金属导电微粒运动的作用。 In order to improve the flexibility of transmission corridor right of way in ultra-high voltage DC system, it is necessary to study DC gas insulated metal enclosed transmission line (GIL) which can replace sections of overhead lines. Based on international test results of small-scale electrode and considering the surface roughness, the equation which can be used for estimating the critical breakdown field is deduced by using Levenberg-Marquart method. During these tests related insulator of DC GIL, the test method using the cylinder-flat electrode instead of the coaxial cylinder electrode, is presented. The DC GIL electrode which includes particle trap, particle driver and field-well ring is designed. Electric field distribution of this electrode is also emulated. The results indicate the triple structure can limit the activity of the metal conducting particle.
出处 《中国电机工程学报》 EI CSCD 北大核心 2008年第13期1-7,共7页 Proceedings of the CSEE
关键词 特高压直流 气体绝缘金属封闭输电线路 麦夸特法 同轴圆柱电极 金属导电微粒 ultra-high voltage DC gas insulated metalenclosed transmission line Levenberg-Marquart method coaxial cylinder electrode metal conducting particle
  • 相关文献

参考文献19

  • 1Benato B, Mario C D, Koch H. High-capability applications of long gas-insulated lines in structures[J]. IEEE Transaction on Power Delivery, 2007, 22(1): 619-626.
  • 2高凯,李莉华.气体绝缘输电线路技术及其应用[J].中国电力,2007,40(1):84-88. 被引量:57
  • 3Schoeffner G, Graf R. Suitability of N2-SF6 gas mixtures for the application at gas insulated transmission lines GIL[C]. IEEE Bologna PowerTech Conference, Bologna, 2003: 6-11.
  • 4Cooke C M. Charging of insulator surfaces by ionization and transport in gases[J]. IEEE Transactions on Electrical Insulation, 1988, EI-17(2): 172-178.
  • 5Anis H, Srivastava K D. Particle-initiated breakdown in compressed gas insulation under time-varying voltages[J]. IEEE Transactions on Power Apparatus and System, 1981, PAS-100(8): 3694-3702.
  • 6Okubo H, Yoshida M, Takahashi T, et al. Partial discharge measurement in a long distance SF6 gas insulated transmission line (GIL)[J]. IEEE Transactions on Power Delivery, 1998, 13(3):683-690.
  • 7Menju S, Takahashi K. DC dielectric strength of a SF6gas insulated system[J]. IEEE Transaction on Power Delivery, 1978, PAS-97(1): 217-224.
  • 8Nitta T, Nakanishi K. Charge accumulation on insulating spacers for HVDC GIS[J]. IEEE Transactions on Electrical Insulation, 1991, 26(3): 418-427.
  • 9孙昭英,李庆峰,宿志一,范建斌,张学军,谷琛.±800kV直流输电空气间隙外绝缘特性研究[J].中国电力,2006,39(10):47-51. 被引量:27
  • 10Cooke C M. Bulk charging of epoxy insulation under DC stress [C]. IEEE Intern. Sympos. Electr. Insul., Boston, USA, 1980,Pages(s): 220-227.

二级参考文献37

共引文献150

同被引文献746

引证文献90

二级引证文献862

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部