期刊文献+

无限非均质横观各向同性黏弹性介质中具有圆柱孔洞时的振动 被引量:3

Vibration of an Infinite Inhomogeneous Trasversely Isotropic Viscoelastic Medium With a Cylindrical Hole
在线阅读 下载PDF
导出
摘要 在无限介质中,研究了横截面为圆的柱形孔洞表面上瞬时径向力或扭转引起的扰动,讨论了高阶黏弹性和横观各向同性弹性参数的非均匀性对扰动产生的影响.根据高阶黏弹性Voigt模型,将非零应力分量简化为径向位移分量项表示,这对横观各向同性和高阶黏弹性固体介质是合宜的.导出了含有弹性和黏弹性参数以幂律变化时的应力方程.在瞬时力和扭转边界条件下,求解该方程,求得径向位移分量以及和它相关的应力分量,用修正的Bessel函数项来表示.对瞬时径向力作用问题进行了数值分析,并给出了不同阶的黏弹性和非均质性时的位移和应力变化图形.扭转作用时扰动的数值解可以用类似的方法研究,这里不再深入讨论. The influences of higher order viscoelasticity and the inhomogeneities of the transversely isotropic elastic parameters on the disturbances in an infinite medium, caused by the presence of a transient radial force or twist on the surface of a cylindrical hole with circular cross section are investigated. Following Voigt's model for higher order viscoelasticity the nonvanisbing stress components valid for a transversely isotropic and higher order viscoelastic solid medium were deduced in terms of radial displacement component. Considering the power law variation of elastic and viscoelastic parameters, the stress equation of motion was developed. Solving this equation under suitable boundary conditions due to transient forces and twists radial displacement and relevant stress components were found out in terms of modified Bessel functions. The problem for the presence of transient radial force was numerically analysed. Modulations of displacement and stresses due to different order of viscoelasticity and inhomogeneity were graphically depicted. The numerical study of the disturbance caused by the presence of twist on the surface may be similarly done and is not pursued.
出处 《应用数学和力学》 CSCD 北大核心 2008年第3期331-341,共11页 Applied Mathematics and Mechanics
关键词 高阶黏弹性 非均质和横观各向同性 瞬时力和扭转 径向位移 应力分 修正的Bessel函数 higher order viscoelasticity inhomogeneity and transversely isotropy transient force and twist radial displacement stress component modified Bessel function
  • 相关文献

参考文献23

  • 1Flugge W. Viscoelasticity[ M]. London: Blasdell Publishing Co, 1967.
  • 2Ezzat M A. Fundamental solution in generalized magneto thermoelasticity with two relaxation times for perfect conductor cylindrical region[J]. Internat J Engrg Sci,2004,42(13/14):1503-1519.
  • 3Bullen K E. An Introduction to Theory of Seismology[M]. Cambridge: Cambridge University Press, 1963.
  • 4Nowacki W. Dynamics of Elastic System[M]. London: Chapman and Hall, 1963.
  • 5H.M.约塞夫,吴承平.带球形空腔的广义热弹性无限大材料的弹性模量和传热系数与材料参考温度的相关性[J].应用数学和力学,2005,26(4):431-436. 被引量:10
  • 6Sengupta P R, De N, Kar M, et al.Rotatory vibration of sphere of higher order viscoelastic solid[J].Internat J Math Math Sci,1994,17(4):799-806.
  • 7Biswas P K, Sengupta P R. Torsional vibration of a non-homogeneous viscoelastic circular cylinder involving strain and stress rate of higher order[J]. Acta Ciencia Indica, 1991,17M ( 4 ) : 747-754.
  • 8Biswas P K, Sengupta P R. Disturbances in an infinite visco-elastic medium by transient radial forces and twist on the surface of a cylindrical hole considering rate of stress and rate of strain of higher order[J]. Indian J Theo Phys,1989,37(1):61-70.
  • 9Das T K, Sengupta P R. Effect of damping on the torsional vibration of a homogeneous viscoelastic circular cylinder including strain rate stress rate[J]. Acta Ciencia Indica, 1991,17M(2):271-280.
  • 10Bhattacharya S, Sengupta P R. Disturbances in a general viscoelastic medium due to impulsive forces on a spherical cavity[J].Gerlands Beitr Geophysik, Leipzig, 1978,87Ⅰ(8) : 57-62.

二级参考文献12

  • 1Lord H, Shulman Y.A generalized dynamical theory of thermoelasticity[J]. J Mech Phys Solids,1967,15(5) :229-309.
  • 2Sherief H,dahaliwal R. A generalized one-dimensional thermal shock problem for short times[J].J Thermal Stresses,1981,4:407-420.
  • 3Sherief H, Anwar M. Problem in generalized thermoelasticity[J] . J Thermal Stresses , 1986,9: 165-182.
  • 4Sherief H. Fundametal solution to the generalized thermoelastic problem for short times[J].J Thermal Stresses, 1986,9:151-164.
  • 5Noda N.Thermal Stresses in materials with temperature-dependent properties[A] .In:richard B Hetnarski Ed.Thermal Stresses[C]. Vol 1.Amsterdam:North-Holland, 1986,391-396.
  • 6Takeuti Y,Noda N.A three-dimensional treatment of transient thermal stresses in a circular cylinder due to an arbitrary heat supply[J]. J Appl Mech,1978,45:817-821.
  • 7Nowacki W. Dymamic Problems of Thermoelasticity[M]. Leyden: Noordhoff International Publishing ,1975.
  • 8Ezzat M A, Othman M I, El-Karamany. The dependence of the modulus of elasticity on the reference temperature in generalized thermoelasticity[ J]. J Thermal Stresses ,2001,24(12): 1159-1176.
  • 9Sherief Hany H,Anwar Mohamed N. A problem in generalized thermoelasticity for an infinitely long annular cylinder[ J]. Internat JEngrg Sci, 1988,26(3) :301-306.
  • 10Hanig G, Hirdes U. A method for the numerical inversion of Laplace transform[ J ]. J Comput Appl Math, 1984,10( 1 ): 113-132.

共引文献9

同被引文献22

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部