摘要
从分数导数的定义出发,提出了在经典粘弹性模型理论中采用Abel粘壶取代传统牛顿粘壶的新观点。将高分子粘弹性阻尼器在MTS831.10材料试验机上进行动态力学行为试验,对试验结果用分数导数模型进行拟合。结果表明,分数导数Kelvin模型可以同时精确地拟合高分子材料的存储模量和损耗模量随频率变化的曲线,而且其形式简单、统一,在计算过程中需要调整的参数很少。最后将分数导数模型引入静态特性公式,得出了圆筒状粘弹性阻尼器动态刚度与阻尼的表达式。
A new idea that the traditional Newton dashpot is replaced by Abel dashpot is proposed here, according to the definition of fractional order derivative. The experiment of dynamic behaviors for visco-elastic damper of high polymers in MTS831.10 Testing System has been carried out. And the data of test has also been simulated by fractional Kelvin model. Results show that the fractional Kelvin model could accurately simulate the curves of storage modulus and dissipation modulus of solid polymers, with simple and uniform formula and less parameters adjustment. In the end,the expression for the dynamic rigidity and damping of visco-elastic damper with the shape of hollow cylinder is obtained by combing fractional derivative model with prediction formula of static properties.
出处
《振动工程学报》
EI
CSCD
北大核心
2008年第1期48-53,共6页
Journal of Vibration Engineering
基金
广东省自然科学基金资助项目(010428)
关键词
分数导数
阻尼器
粘弹性
MTS
本构关系
fractional order derivative
damper
visco-elasticity
MTS
constitutive relationship