期刊文献+

连铸板坯表面温度控制器的设计 被引量:1

Design of surface temperature controller of continuous slabs casting
在线阅读 下载PDF
导出
摘要 以某钢厂引进的连铸板坯二冷动态控制系统为研究对象,提出了基于改进粒子群BP算法的板坯二冷区表面温度神经网络控制器。以实际生产现场的设备、工艺参数为基础进行了仿真研究,结果表明表面温度神经网络控制器的输出结果与实际生产参数的误差小于2%,研究结果对引进的同类连铸板坯二冷控制系统的升级改造具有指导意义。 Surface temeperature neural network controller (TNNC) is suggested that based on improved particle swarm optimization back propagation (IPSOBP) algorithm about introduced secondary cooling dynamic control system in casting slab of some steel mills. Simulation result on the parameter of quipment and realy technological producing indicates that the error between TNNC output result and reality one is smaller than 2%. The result has guiding significance to the promotion and reformation of same kind introduced control system.
出处 《冶金能源》 北大核心 2008年第1期19-22,共4页 Energy For Metallurgical Industry
关键词 连铸板坯 表面温度 控制器 粒子群算法 continuous slabs casting surface temeperature controller particle swarm algorithm
  • 相关文献

参考文献5

  • 1F. van den Bergh, A. P. Engelbrecht. A study of particle swarm optimization particle trajectories. Information Sciences ,2006,176 (8) :937 - 971.
  • 2Marco Dorigoa, Christian Blumb. Ant colony optimization theory:A survey Theoretical Computer Science , 2005,344 (2 - 3 ) :243 - 278.
  • 3王安娜,陶子玉,姜茂发,田慧欣,张丽娜.基于PSO和BP网络的LF炉钢水温度智能预测[J].控制与决策,2006,21(7):814-816. 被引量:22
  • 4熊伟丽,徐保国,孙俊.改进QDPSO算法在BP网络训练中的应用[J].系统仿真学报,2005,17(9):2078-2081. 被引量:15
  • 5H.H. Zeineldin, E. F. El - Saadany, M. M. A. Salama. Optimal coordination of overcurrent relays using a modified particle swarm optimization. Electric Power Systems Research,2006,76 ( 11 ) :988 - 995.

二级参考文献13

  • 1HaykinS 叶世伟 史忠植译.神经网络原理[M].北京:机械工业出版社,2004..
  • 2Kennedy J, Eberhart R. Particle swarm optimization[J]. Proc. IEEE int.Conf. on Neural Networks,1995, 4: 1942-1948.
  • 3Clerc M, Kennedy J. The particle swarm: explosion, stability, and convergence in a multi-dimensional complex space [J]. IEEE Trans.on Evolutionary computation, 2002, 6( 1)" 58-73.
  • 4Jun Sun, Bin Feng, Wenbo Xu et al. Particle swarm optimization with particles having quantum behabior [C]. Congress on Evolutionary Computation, 2004.
  • 5Van den Bergh F, Engelbrecht A E Training product unit networks using cooperative particle swarm optimizers [C]. Proc. Of the third Genetic and Evolutionary Computation Conference, 2001.
  • 6Chow W S, Fang Y. A Recurrent Neural-network-based Real-time Learning Control Strategy Applying to Nonlinear Systems with Unknown Dynamics[J]. IEEE Trans on Neural Network,1998, 45(1):151-161.
  • 7Shen W X, Chan C C, Lo E W C, et al. A New Battery Available Capacity Indicator for Electric Vehicles Using Neural Network [J]. J of Power Sources, 2002, 43(6):817-826.
  • 8Zhong L,Liu L S,Zou C M,et al. The Application of Neural Network in Life Time Prediction of Concrete[J].J of Wuhan University of Technology, 2002, 17(1) :79-81.
  • 9Kennedy J,Eberhart R C. Particle Swarm Optimization[A]. Proc IEEE Int Conf on Neural Networks [C].Perth : IEEE Piscataway, 1995:1942-1948.
  • 10Kannana S, Mary S, Slochanal R,et al. Application of Particle Swarm Optimization Technique and Its Variants to Generation Expansion Planning Problem[J]. Electric Power Systems Research, 2004, 70 (8):203-210.

共引文献35

同被引文献12

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部