期刊文献+

基于SIS的预测控制应用研究

STUDY ON APPLICATION OF PREDICTIVE CONTROL BASED ON SUPERVISORY INFORMATION SYSTEM
在线阅读 下载PDF
导出
摘要 火力发电厂厂级监控信息系统(SIS)作为一种以优化机组运行、提高运行经济性为主要目标的信息系统,已在火电厂厂级管理方面发挥了重要作用。为了更加有效地利用SIS平台上的大量数据,提出了基于SIS平台的动态矩阵预测控制。以湖北某电厂SIS为例,将锅炉过热蒸汽温度作为控制对象,蒸汽流量作为扰动量来反映锅炉运行工况的变化。采用神经网络辨识方法建立被控对象的动态模型并将动态矩阵控制算法应用到蒸汽温度控制系统。仿真结果表明,基于仿真数据建立的过热蒸汽温度神经网络动态模型,能够很好地预测被控对象在不同运行工况下的动态特性,基于神经网络模型的动态矩阵控制策略优于传统PID的控制效果。 The plant - level supervisory information system(SIS) in thermal power plant, as an information system taking optimization of unit operation and enhancement of economic efficiency in operation as the main targets, has played an important role in plant - level management in power plants. In order to more effectively utilize the vast amount of data on the SIS platform, an advanced control strategy, i.e. dynamic matrix predictive control, has been put forward. Taking SIS of one power plant in Hubei Province as exam- ple, and making temperature of superheated steam as the controlled object, and the flow rate of steam as the disturbance variable the variation of boiler's operating condition has been manifested. A dynamic matrix model has been established by using the neural network recognition method, and the dynamic matrix control algorithm being applied to the steam temperature control system. Result of emulation shows that the neural network dynamic model of superheated steam established on the basis of emulated data can perfectly predict dynamic property of the controlled object under different operating conditions. The dynamic matrix control strategy based on neural network model can provide better control effectiveness than that of traditional PID control.
出处 《热力发电》 CAS 北大核心 2008年第1期58-64,共7页 Thermal Power Generation
关键词 火电厂 SIS 过热蒸汽温度 动态矩阵控制算法 神经网络 预测控制 thermal power plant SIS superheated steam temperature dynamic matrix control algorithm neural network predictive control
  • 相关文献

参考文献11

二级参考文献12

  • 1谭永红.多层前向神经网络的RLS训练算法及其在辨识中的应用[J].控制理论与应用,1994,11(5):594-599. 被引量:28
  • 2Tan Yonghong, Van Cauwenberghe, A Neural network based d-step-ahead predictors for nonlinear systems with time delay [J]. Engineering applications of artificial intelligence, 1999, (12):21-34.
  • 3Hagan MT, Menhaj MB. Training feed forward with the networks marquarard algorithm [J]. IEEE Trans on Neural Networks, 1994, 5 (6):989-993.
  • 4D.W.Clarke,Generalized predictive control,Automatica,Vol.23,No.2,1987,149-160.
  • 5A.U.Levin and K.S.Narendra,Control of nonlinear dynamical systems using neural networks,IEEE Trans on Neural Networks,Vol.7,No.1,1993,30-42.
  • 6V.Kasparian,Davidon least square-based learming algorithm for feedforward neural Networks,Neural Networks.Vol.7,No.4,1994,661-670.
  • 7诸静等.智能预测控制及其应用[M]浙江大学出版社,2002.
  • 8舒迪前.预测控制系统及其应用[M]机械工业出版社,1996.
  • 9席裕庚.预测控制[M]国防工业出版社,1993.
  • 10杨智,高靖.神经元自适应预测PID控制器及实现[J].信息与控制,1999,28(5):345-349. 被引量:18

共引文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部